20#include "OSParameters.h"
22#include "CoinFinite.hpp"
28using std::ostringstream;
36 "inside IpoptSolver constructor\n");
49 "inside IpoptSolver destructor\n");
64 "Leaving IpoptSolver destructor\n");
70 Index& nnz_h_lag, IndexStyleEnum& index_style)
72 std::ostringstream outStr;
77 throw ErrorClass(
"Ipopt does not solve integer programs -- please try Bonmin or Couenne");
85 outStr <<
"number variables !!!!!!!!!!!!!!!!!!!!!!!!!!!" << n << endl;
86 outStr <<
"number constraints !!!!!!!!!!!!!!!!!!!!!!!!!!!" << m << endl;
97 outStr <<
"error in OSIpoptSolver, AD initialization failed:\n" << eclass.
errormsg << endl;
113 outStr <<
"error in OSIpoptSolver, Jacobian sparsity:\n" << eclass.
errormsg << endl;
118 if (sparseJacobian != NULL)
130 outStr <<
"nnz_jac_g !!!!!!!!!!!!!!!!!!!!!!!!!!!" << nnz_jac_g << endl;
146 if(sparseHessian != NULL)
158 outStr <<
"print nnz_h_lag (OSIpoptSolver.cpp)" << endl;
159 outStr <<
"nnz_h_lag !!!!!!!!!!!!!!!!!!!!!!!!!!!" << nnz_h_lag << endl;
160 outStr <<
"set index_style (OSIpoptSolver.cpp)" << endl;
164 index_style = TNLP::C_STYLE;
168 outStr <<
"return from get_nlp_info (OSIpoptSolver.cpp)" << nnz_h_lag << endl;
186 Index m, Number* g_l, Number* g_u)
193 for(i = 0; i < n; i++)
195 x_l[ i] = mdVarLB[ i];
196 x_u[ i] = mdVarUB[ i];
208 for(
int i = 0; i < m; i++)
210 g_l[ i] = mdConLB[ i];
211 g_u[ i] = mdConUB[ i];
219 bool init_z, Number* z_L, Number* z_U, Index m,
bool init_lambda,
222 std::ostringstream outStr;
227 assert(init_x ==
true);
228 assert(init_z ==
false);
229 assert(init_lambda ==
false);
248 outStr <<
"number of variables initialed: " << m1 << endl;
254 initialed =
new bool[n1];
258 outStr <<
"number of variables in total: " << n1 << endl;
262 for(k = 0; k < n1; k++)
263 initialed[k] =
false;
269 "get initial values\n");
279 for(k = 0; k < m1; k++)
281 i = initVarVector[k]->
idx;
282 if (initVarVector[k]->idx > n1)
283 throw ErrorClass (
"Illegal index value in variable initialization");
285 initval = initVarVector[k]->
value;
289 throw ErrorClass (
"Initial value outside of bounds");
294 throw ErrorClass (
"Initial value outside of bounds");
300 throw ErrorClass (
"Initial value outside of bounds");
303 x[initVarVector[k]->
idx] = initval;
304 initialed[initVarVector[k]->idx] =
true;
310 "Error in IpoptProblem::get_starting_point (see OSIpoptSolver.cpp)\n"+eclass.
errormsg+
"\n\n");
314 double default_initval;
315 default_initval = 1.7171;
318 for(k = 0; k < n1; k++)
324 x[k] = default_initval;
329 x[k] = default_initval;
334 x[k] = default_initval;
345 for(i = 0; i < n1; i++)
347 outStr <<
"INITIAL VALUE !!!!!!!!!!!!!!!!!!!! " << x[ i] << std::endl;
386 std::ostringstream outStr;
388 double *objGrad = NULL;
401 outStr <<
"error in IpoptProblem::eval_grad_f (see OSIpoptSolver.cpp)\n" << eclass.
errormsg << endl;
407 for(i = 0; i < n; i++)
409 grad_f[ i] = objGrad[ i];
418 std::ostringstream outStr;
423 for(i = 0; i < m; i++)
425 if( CoinIsnan( (
double)conVals[ i] ) )
return false;
435 outStr <<
"error in IpoptProblem::eval_grad_g (see OSIpoptSolver.cpp)\n" << eclass.
errormsg << endl;
446 Index m, Index nele_jac, Index* iRow, Index *jCol,
449 std::ostringstream outStr;
463 outStr <<
"error in IpoptProblem::eval_jac_g (see OSIpoptSolver.cpp)\n" << eclass.
errormsg << endl;
471 for(idx = 0; idx < m; idx++)
473 for(k = *(sparseJacobian->
starts + idx); k < *(sparseJacobian->
starts + idx + 1); k++)
476 jCol[i] = *(sparseJacobian->
indexes + k);
492 outStr <<
"error in IpoptProblem::eval_jac_g (see OSIpoptSolver.cpp)\n" << eclass.
errormsg << endl;
499 for(
int i = 0; i < nele_jac; i++)
501 values[ i] = sparseJacobian->
values[i];
509 Number obj_factor, Index m,
const Number* lambda,
510 bool new_lambda, Index nele_hess, Index* iRow,
511 Index* jCol, Number* values)
513 std::ostringstream outStr;
532 for(i = 0; i < nele_hess; i++)
541 double* objMultipliers =
new double[1];
542 objMultipliers[0] = obj_factor;
546 delete[] objMultipliers;
553 outStr <<
"error in OSIpoptSolver, line 444:\n" << eclass.
errormsg << endl;
557 delete[] objMultipliers;
560 for(i = 0; i < nele_hess; i++)
562 values[ i] = *(sparseHessian->
hessValues + i);
570 bool& use_x_scaling, Index n,
572 bool& use_g_scaling, Index m,
579 else obj_scaling = 1;
580 use_x_scaling =
false;
581 use_g_scaling =
false;
586 Index n,
const Number* x,
const Number* z_L,
const Number* z_U,
587 Index m,
const Number* g,
const Number* lambda, Number obj_value,
588 const IpoptData* ip_data, IpoptCalculatedQuantities* ip_cq)
597 ostringstream outStr;
600 outStr << std::endl << std::endl <<
"Solution of the primal variables, x" << std::endl;
601 for (Index i=0; i<n; i++)
603 outStr <<
"x[" << i <<
"] = " << x[i] << std::endl;
606 outStr << std::endl << std::endl <<
"Solution of the bound multipliers, z_L and z_U" << std::endl;
607 for (Index i=0; i<n; i++)
609 outStr <<
"z_L[" << i <<
"] = " << z_L[i] << std::endl;
611 for (Index i=0; i<n; i++)
613 outStr <<
"z_U[" << i <<
"] = " << z_U[i] << std::endl;
621 outStr << std::endl <<
"Objective value f(x*) = " <<
os_dtoa_format(obj_value) << std::endl;
625 int numberOfOtherVariableResults;
630 double *dualValue = NULL;
631 std::string *rcost = NULL;
633 double* mdObjValues = NULL;
636 mdObjValues =
new double[1];
639 std::string message =
"Ipopt solver finishes to the end.";
640 std::string solutionDescription =
"";
646 throw ErrorClass(
"OSResult error: setSolverInvoked");
648 throw ErrorClass(
"OSResult error: setServiceName");
650 throw ErrorClass(
"OSResult error: setInstanceName");
657 throw ErrorClass(
"OSResult error: setVariableNumer");
659 throw ErrorClass(
"OSResult error: setObjectiveNumber");
661 throw ErrorClass(
"OSResult error: setConstraintNumber");
663 throw ErrorClass(
"OSResult error: setSolutionNumer");
665 throw ErrorClass(
"OSResult error: setGeneralMessage");
670 solutionDescription =
"SUCCESS[IPOPT]: Algorithm terminated normally at a locally optimal point, satisfying the convergence tolerances.";
677 dualValue =
new double[ numCon];
678 for (Index i=0; i < numCon; i++)
680 dualValue[ i] = -lambda[ i];
688 mdObjValues[0] = obj_value ;
695 numberOfOtherVariableResults = 1;
699 for (Index i = 0; i < n; i++)
730 case MAXITER_EXCEEDED:
731 solutionDescription =
"MAXITER_EXCEEDED[IPOPT]: Maximum number of iterations exceeded.";
737 mdObjValues[0] = obj_value ;
742 case STOP_AT_TINY_STEP:
743 solutionDescription =
"STOP_AT_TINY_STEP[IPOPT]: Algorithm proceeds with very little progress.";
749 mdObjValues[0] = obj_value ;
754 case STOP_AT_ACCEPTABLE_POINT:
755 solutionDescription =
"STOP_AT_ACCEPTABLE_POINT[IPOPT]: Algorithm stopped at a point that was converged, not to _desired_ tolerances, but to _acceptable_ tolerances";
761 mdObjValues[0] = obj_value ;
766 case LOCAL_INFEASIBILITY:
767 solutionDescription =
"LOCAL_INFEASIBILITY[IPOPT]: Algorithm converged to a point of local infeasibility. Problem may be infeasible.";
773 case USER_REQUESTED_STOP:
774 solutionDescription =
"USER_REQUESTED_STOP[IPOPT]: The user call-back function intermediate_callback returned false, i.e., the user code requested a premature termination of the optimization.";
780 case DIVERGING_ITERATES:
781 solutionDescription =
"DIVERGING_ITERATES[IPOPT]: It seems that the iterates diverge.";
787 case RESTORATION_FAILURE:
788 solutionDescription =
"RESTORATION_FAILURE[IPOPT]: Restoration phase failed, algorithm doesn't know how to proceed.";
794 case ERROR_IN_STEP_COMPUTATION:
795 solutionDescription =
"ERROR_IN_STEP_COMPUTATION[IPOPT]: An unrecoverable error occurred while IPOPT tried to compute the search direction.";
801 case INVALID_NUMBER_DETECTED:
802 solutionDescription =
"INVALID_NUMBER_DETECTED[IPOPT]: Algorithm received an invalid number (such as NaN or Inf) from the NLP; see also option check_derivatives_for_naninf.";
809 solutionDescription =
"INTERNAL_ERROR[IPOPT]: An unknown internal error occurred. Please contact the IPOPT authors through the mailing list.";
816 solutionDescription =
"OTHER[IPOPT]: other unknown solution status from Ipopt solver";
827 delete[] mdObjValues;
837 outStr <<
"error trap in OSIpoptSolver:\n" << eclass.
errormsg << endl;
847 delete[] mdObjValues;
858 std::ostringstream outStr;
870 throw ErrorClass(
"Solver cannot handle multiple objectives --- please delete all but one");
874 app =
new IpoptApplication();
884 outStr <<
"error in OSIpoptSolver, line 722:\n" << eclass.
errormsg << endl;
897 std::ostringstream outStr;
901 throw ErrorClass(
"Ipopt NEEDS AN OBJECTIVE FUNCTION\n(For pure feasibility problems, use zero function.)");
905 app->Options()->SetIntegerValue(
"print_level", 0);
906 app->Options()->SetIntegerValue(
"max_iter", 20000);
907 app->Options()->SetNumericValue(
"bound_relax_factor", 0,
true,
true);
908 app->Options()->SetStringValue(
"mu_strategy",
"adaptive",
true,
true);
910 app->Options()->SetStringValue(
"check_derivatives_for_naninf",
"yes");
915 app->Options()->SetStringValue(
"hessian_constant",
"yes",
true,
true);
921 app->Options()->SetStringValue(
"nlp_scaling_method",
"user-scaling");
938 outStr <<
"number of solver options ";
943 std::vector<SolverOption*> optionsVector;
947 int num_ipopt_options = optionsVector.size();
948 for(i = 0; i < num_ipopt_options; i++)
953 outStr <<
"ipopt solver option ";
954 outStr << optionsVector[ i]->name;
958 if(optionsVector[ i]->type ==
"numeric" )
963 outStr <<
"FOUND A NUMERIC OPTION ";
964 outStr <<
os_strtod( optionsVector[ i]->value.c_str(), &pEnd );
968 app->Options()->SetNumericValue(optionsVector[ i]->name,
os_strtod( optionsVector[ i]->value.c_str(), &pEnd ) );
970 else if(optionsVector[ i]->type ==
"integer" )
975 outStr <<
"FOUND AN INTEGER OPTION ";
976 outStr << atoi( optionsVector[ i]->value.c_str() );
980 app->Options()->SetIntegerValue(optionsVector[ i]->name, atoi( optionsVector[ i]->value.c_str() ) );
982 else if(optionsVector[ i]->type ==
"string" )
987 outStr <<
"FOUND A STRING OPTION ";
988 outStr << optionsVector[ i]->value.c_str();
992 app->Options()->SetStringValue(optionsVector[ i]->name, optionsVector[ i]->value);
1012 std::ostringstream outStr;
1019 ApplicationReturnStatus status =
app->OptimizeTNLP(
nlp);
1031 outStr <<
"error in OSIpoptSolver routine solve():\n" << eclass.
errormsg << endl;
1045 ostringstream outStr;
1074 outStr <<
"problem is a minimization" << endl;
1076 outStr <<
"problem is a maximization" << endl;
1101 outStr <<
"Start Value = "
1107 outStr <<
"Index Value = "
1109 outStr <<
"Nonzero Value = "
const OSSmartPtr< OSOutput > osoutput
std::string os_dtoa_format(double x)
std::string OSgetVersionInfo()
double os_strtod(const char *s00, char **se)
std::string osol
osol holds the options for the solver
bool bSetSolverOptions
bSetSolverOptions is set to true if setSolverOptions has been called, false otherwise
std::string osrl
osrl holds the solution or result of the model
OSInstance * osinstance
osinstance holds the problem instance in-memory as an OSInstance object
bool bCallbuildSolverInstance
bCallbuildSolverInstance is set to true if buildSolverService has been called
std::string osil
osil holds the problem instance as a std::string
OSOption * osoption
osoption holds the solver options in-memory as an OSOption object
OSResult * osresult
osresult holds the solution or result of the model in-memory as an OSResult object
used for throwing exceptions.
std::string errormsg
errormsg is the error that is causing the exception to be thrown
double value
initial value
Variables * variables
variables is a pointer to a Variables object
Objectives * objectives
objectives is a pointer to a Objectives object
virtual bool get_starting_point(Ipopt::Index n, bool init_x, Ipopt::Number *x, bool init_z, Ipopt::Number *z_L, Ipopt::Number *z_U, Ipopt::Index m, bool init_lambda, Ipopt::Number *lambda)
Method to return the starting point for the algorithm.
virtual bool get_scaling_parameters(Ipopt::Number &obj_scaling, bool &use_x_scaling, Ipopt::Index n, Ipopt::Number *x_scaling, bool &use_g_scaling, Ipopt::Index m, Ipopt::Number *g_scaling)
std::string * ipoptErrorMsg
virtual bool eval_grad_f(Ipopt::Index n, const Ipopt::Number *x, bool new_x, Ipopt::Number *grad_f)
Method to return the gradient of the objective.
IpoptProblem(OSInstance *osinstance_, OSOption *osoption_, OSResult *osresult_, std::string *ipoptErrorMsg_)
the IpoptProblemclass constructor
virtual bool eval_g(Ipopt::Index n, const Ipopt::Number *x, bool new_x, Ipopt::Index m, Ipopt::Number *g)
Method to return the constraint residuals.
virtual ~IpoptProblem()
the IpoptProblem class destructor
virtual bool get_nlp_info(Ipopt::Index &n, Ipopt::Index &m, Ipopt::Index &nnz_jac_g, Ipopt::Index &nnz_h_lag, IndexStyleEnum &index_style)
IPOpt specific methods for defining the nlp problem.
virtual bool eval_jac_g(Ipopt::Index n, const Ipopt::Number *x, bool new_x, Ipopt::Index m, Ipopt::Index nele_jac, Ipopt::Index *iRow, Ipopt::Index *jCol, Ipopt::Number *values)
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobia...
virtual bool eval_f(Ipopt::Index n, const Ipopt::Number *x, bool new_x, Ipopt::Number &obj_value)
Method to return the objective value.
virtual bool get_bounds_info(Ipopt::Index n, Ipopt::Number *x_l, Ipopt::Number *x_u, Ipopt::Index m, Ipopt::Number *g_l, Ipopt::Number *g_u)
Method to return the bounds for my problem.
virtual bool eval_h(Ipopt::Index n, const Ipopt::Number *x, bool new_x, Ipopt::Number obj_factor, Ipopt::Index m, const Ipopt::Number *lambda, bool new_lambda, Ipopt::Index nele_hess, Ipopt::Index *iRow, Ipopt::Index *jCol, Ipopt::Number *values)
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The valu...
virtual void finalize_solution(Ipopt::SolverReturn status, Ipopt::Index n, const Ipopt::Number *x, const Ipopt::Number *z_L, const Ipopt::Number *z_U, Ipopt::Index m, const Ipopt::Number *g, const Ipopt::Number *lambda, Ipopt::Number obj_value, const Ipopt::IpoptData *ip_data, Ipopt::IpoptCalculatedQuantities *ip_cq)
This method is called when the algorithm is complete so the TNLP can store/write the solution.
std::string * ipoptErrorMsg
OSoLReader * m_osolreader
m_osolreader is an OSoLReader object used to create an osoption from an osol string if needed
OSiLReader * m_osilreader
m_osilreader is an OSiLReader object used to create an osinstance from an osil string if needed
virtual void setSolverOptions()
The implementation of the virtual functions.
Ipopt::SmartPtr< Ipopt::TNLP > nlp
Ipopt::SmartPtr< Ipopt::IpoptApplication > app
virtual void solve()
solve results in an instance being read into the Ipopt data structures and optimize
IpoptSolver()
the IpoptSolver class constructor
~IpoptSolver()
the IpoptSolver class destructor
void dataEchoCheck()
use this for debugging, print out the instance that the solver thinks it has and compare this with th...
virtual void buildSolverInstance()
The implementation of the virtual functions.
The in-memory representation of an OSiL instance..
SparseJacobianMatrix * calculateAllConstraintFunctionGradients(double *x, double *objLambda, double *conLambda, bool new_x, int highestOrder)
Calculate the gradient of all constraint functions.
double * getConstraintLowerBounds()
Get constraint lower bounds.
int getNumberOfQuadraticTerms()
Get the number of specified (usually nonzero) qTerms in the quadratic coefficients.
double * getVariableUpperBounds()
Get variable upper bounds.
SparseJacobianMatrix * getJacobianSparsityPattern()
int getNumberOfIntegerVariables()
getNumberOfIntegerVariables
bool bUseExpTreeForFunEval
bUseExpTreeForFunEval is set to true if you wish to use the OS Expression Tree for function evaluatio...
int getNumberOfBinaryVariables()
getNumberOfBinaryVariables
std::string getInstanceDescription()
Get instance description.
std::string getInstanceSource()
Get instance source.
int getConstraintNumber()
Get number of constraints.
double * calculateAllConstraintFunctionValues(double *x, double *objLambda, double *conLambda, bool new_x, int highestOrder)
Calculate all of the constraint function values.
int getLinearConstraintCoefficientNumber()
Get number of specified (usually nonzero) linear constraint coefficient values.
char * getVariableTypes()
Get variable initial values.
double * calculateAllObjectiveFunctionValues(double *x, double *objLambda, double *conLambda, bool new_x, int highestOrder)
Calculate all of the objective function values.
SparseMatrix * getLinearConstraintCoefficientsInColumnMajor()
Get linear constraint coefficients in column major.
double * calculateObjectiveFunctionGradient(double *x, double *objLambda, double *conLambda, int objIdx, bool new_x, int highestOrder)
Calculate the gradient of the objective function indexed by objIdx.
double ** getDenseObjectiveCoefficients()
getDenseObjectiveCoefficients.
bool initForAlgDiff()
This should be called by nonlinear solvers using callback functions.
InstanceData * instanceData
A pointer to an InstanceData object.
int getNumberOfNonlinearExpressions()
Get number of nonlinear expressions.
SparseHessianMatrix * getLagrangianHessianSparsityPattern()
QuadraticTerms * getQuadraticTerms()
Get all the quadratic terms in the instance.
double * getVariableLowerBounds()
Get variable lower bounds.
int getVariableNumber()
Get number of variables.
std::string * getVariableNames()
Get variable names.
std::string getInstanceName()
Get instance name.
SparseHessianMatrix * calculateLagrangianHessian(double *x, double *objLambda, double *conLambda, bool new_x, int highestOrder)
Calculate the Hessian of the Lagrangian Expression Tree This method will build the CppAD expression t...
std::string * getConstraintNames()
Get constraint names.
std::string * getObjectiveMaxOrMins()
Get objective maxOrMins.
double * getConstraintUpperBounds()
Get constraint upper bounds.
int getObjectiveNumber()
Get number of objectives.
InitVarValue ** getInitVarValuesSparse()
Get the initial values associated with the variables in sparse form.
int getNumberOfInitVarValues()
Get the number of initial variable values.
std::vector< SolverOption * > getSolverOptions(std::string solver_name)
Get the options associated with a given solver.
int getNumberOfSolverOptions()
Get the number of solver options.
bool setGeneralMessage(std::string message)
Set the general message.
bool setSolutionNumber(int number)
set the number of solutions.
bool setInstanceName(std::string instanceName)
Set instance name.
bool setObjectiveValuesDense(int solIdx, double *objectiveValues)
Set the [i]th optimization solution's objective values, where i equals the given solution index.
bool setNumberOfOtherVariableResults(int solIdx, int numberOfOtherVariableResults)
Set the [i]th optimization solution's other (non-standard/solver specific) variable-related results,...
bool setGeneralStatusType(std::string type)
Set the general status type, which can be: success, error, warning.
bool setObjectiveNumber(int objectiveNumber)
Set the objective number.
bool setPrimalVariableValuesDense(int solIdx, double *x)
Set the [i]th optimization solution's primal variable values, where i equals the given solution index...
bool setServiceName(std::string serviceName)
Set service name.
bool setSolverInvoked(std::string solverInvoked)
Set solver invoked.
bool setVariableNumber(int variableNumber)
Set the variable number.
bool setDualVariableValuesDense(int solIdx, double *y)
Set the [i]th optimization solution's dual variable values, where i equals the given solution index.
bool setSolutionMessage(int solIdx, std::string msg)
Set the [i]th optimization solution's message, where i equals the given solution index.
bool setSolutionStatus(int solIdx, std::string type, std::string description)
Set the [i]th optimization solution status, where i equals the given solution index.
bool setAnOtherVariableResultSparse(int solIdx, int otherIdx, std::string name, std::string value, std::string description, int *idx, std::string *s, int n)
Set the [i]th optimization solution's other (non-standard/solver specific)variable-related results,...
bool setConstraintNumber(int constraintNumber)
Set the constraint number.
Used to read an OSiL string.
OSInstance * readOSiL(const std::string &osil)
parse the OSiL model instance.
Used to read an OSoL string.
OSOption * readOSoL(const std::string &osol)
parse the OSoL solver options.
Take an OSResult object and write a string that validates against OSrL.
std::string writeOSrL(OSResult *theosresult)
create an osrl string from an OSResult object
std::string maxOrMin
declare the objective function to be a max or a min
int numberOfObjectives
numberOfObjectives is the number of objective functions in the instance
Objective ** obj
coef is pointer to an array of ObjCoef object pointers
int * varTwoIndexes
varTwoIndexes holds an integer array of the second variable indexes of all the quadratic terms.
int * rowIndexes
rowIndexes holds an integer array of row indexes of all the quadratic terms.
double * coefficients
coefficients holds a double array all the quadratic term coefficients.
int * varOneIndexes
varOneIndexes holds an integer array of the first variable indexes of all the quadratic terms.
The in-memory representation of a SparseHessianMatrix..
int * hessRowIdx
hessRowIdx is an integer array of row indices in the range 0, ..., n - 1.
int hessDimension
hessDimension is the number of nonzeros in each array.
double * hessValues
hessValues is a double array of the Hessian values.
int * hessColIdx
hessColIdx is an integer array of column indices in the range 0, ..., n - 1.
a sparse Jacobian matrix data structure
int * indexes
indexes holds an integer array of variable indices.
int valueSize
valueSize is the dimension of the values array
int * starts
starts holds an integer array of start elements, each start element points to the start of partials f...
double * values
values holds a double array of nonzero partial derivatives
int * indexes
indexes holds an integer array of rowIdx (or colIdx) elements in coefMatrix (AMatrix).
int * starts
starts holds an integer array of start elements in coefMatrix (AMatrix), which points to the start of...
double * values
values holds a double array of value elements in coefMatrix (AMatrix), which contains nonzero element...
double ub
ub corresponds to the optional attribute that holds the variable upper bound.
double lb
lb corresponds to the optional attribute that holds the variable lower bound.
Variable ** var
Here we define a pointer to an array of var pointers.
@ ENUM_OUTPUT_LEVEL_debug
@ ENUM_OUTPUT_LEVEL_trace
@ ENUM_OUTPUT_LEVEL_error
@ ENUM_OUTPUT_LEVEL_summary
@ ENUM_OUTPUT_AREA_OSSolverInterfaces