Adapting Proof General

Proof General — Organize your proofs!

Adapting Proof General 4.6-git to new provers
July 2022
proofgeneral.github.io

David Aspinall with T. Kleymann

This manual and the program Proof General are Copyright (©) 2000-2011 by members of the
Proof General team, LFCS Edinburgh.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

This manual documents Proof General, Version 4.6-git, for use GNU Emacs 25.2 or (as far as
possible) later versions. Proof General is distributed under the terms of the GNU General Public
License (GPL), version 3 or later; please check the accompanying file COPYING for more details.

Visit Proof General on the web at https://proofgeneral.github.io

Introduction

Welcome to Proof General!
Proof General a generic Emacs-based interface for proof assistants.

This manual contains information for adapting Proof General to new proof assistants, and
some sketches of the internal implementation. It is not intended for most ordinary users of the
system. For full details about how to use Proof General, and information on its availability and
installation, please see the main Proof General manual which should accompany this one.

We positively encourage the support of new systems. Proof General has grown more flexible
and useful as it has been adapted to more proof assistants.

Typically, adding support for a new prover improves support for others, both because the code
becomes more robust, and because new ideas are brought into the generic setting. Notice that
the Proof General framework has been built as a "product line architecture": generality has
been introduced step-by-step in a demand-driven way, rather than at the outset as a grand
design. Despite this strategy, the interface has a surprisingly clean structure. The approach
means that we fully expect hiccups when adding support for new assistants, so the generic core
may need extension or modification. To support this we have an open development method: if
you require changes in the generic support, please contact us (or make adjustments yourself and
send them to us).

Proof General has a home page at https://proofgeneral.github.io. Visit this page for the
latest version of the manuals, other documentation, system downloads, etc.

Future

The aim of the Proof General project is to provide a powerful and configurable interfaces which
help user-interaction with interactive proof assistants.

The strategy Proof General uses is to targets power users rather than novices; other interfaces
have often neglected this class of users. But we do include general user interface niceties, such
as toolbar and menus, which make use easier for all.

Proof General has been Emacs based so far, but plans are afoot to liberate it from the points
and parentheses of Emacs Lisp. The successor project Proof General Kit proposes that proof
assistants use a standard XML-based protocol for interactive proof, dubbed PGIP.

PGIP enables middleware for interactive proof tools and interface components. Rather than
configuring Proof General for your proof assistant, you will need to configure your proof assistant
to understand PGIP. There is a similarity however; the design of PGIP was based heavily on the
Emacs Proof General framework. This means that effort on customizing Emacs Proof General
to a new proof assistant is worthwhile even in the light of PGIP: it will help you to understand
Proof General’s model of interaction, and moreover, we hope to use the Emacs customizations
to provide experimental filters which allow supported provers to communicate using PGIP.

At the time of writing, these ideas are in early stages. For latest details, or to become involved,
see the Proof General Kit webpage (http://proofgeneral.inf.ed.ac.uk/kit).

Credits

David Aspinall put together and wrote most of this manual. Thomas Kleymann wrote some of
the text in Chapter 8. Much of the content is generated automatically from Emacs docstrings,
some of which have been written by other Proof General developers.

https://proofgeneral.github.io
http://proofgeneral.inf.ed.ac.uk/kit

1 Beginning with a New Prover

Proof General has about 100 configuration variables which are set on a per-prover basis to
configure the various features. It may sound like a lot but don’t worry! Many of the variables
occur in pairs (typically regular expressions matching the start and end of some text), and you
can begin by setting just a fraction of the variables to get the basic features of script management
working. The bare minimum for a working prototype is about 25 simple settings.

For more advanced features you may need (or want) to write some Emacs Lisp. If you're adding
new functionality please consider making it generic for different proof assistants, if appropriate.
When writing your modes, please follow the Emacs Lisp conventions, see Section “Tips” in
Elisp.

The configuration variables are declared in the file generic/proof-config.el. The details in
the central part of this manual are based on the contents of that file, beginning in Chapter 2
[Menus and Toolbar and User-level Commands|, page 7, and continuing until Chapter 7 [Global
Constants], page 33. Other chapters cover the details of configuring for multiple files and
for supporting the other Emacs packages mentioned in the user manual (Support for other
Packages). If you write additional Elisp code interfacing to Proof General, you can find out
about some useful functions by reading Chapter 13 [Writing More Lisp Code], page 49. The
last chapter of this manual describes some of the internals of Proof General, in case you are
interested, maybe because you need to extend the generic core to do something new.

In the rest of this chapter we describe the general mechanisms for instantiating Proof General.
We assume some knowledge of the content of the main Proof General manual.

1.1 Overview of adding a new prover

Each proof assistant supported has its own subdirectory under proof-home-directory, used to
store a root elisp file and any other files needed to adapt the proof assistant for Proof General.

Here is how to go about adding support for a new prover.

1. Make a directory called myassistant/ under the Proof General home directory proof-
home-directory, to put the specific customization and associated files in.

2. Add a file myassistant.el to the new directory.

3. Edit proof-site.el to add a new entry to the proof-assistants-table variable. The
new entry should look like this:

(myassistant "My Proof Assistant" "\\.myasst$")

The first item is used to form the name of the internal variables for the new mode as well
as the directory and file where it loads from. The second is a string, naming the proof

assistant. The third item is a regular expression to match names of proof script files for
this assistant. See the documentation of proof-assistant-table for more details.

4. Define the new Proof General modes in myassistant.el, by setting configuration variables
to customize the behaviour of the generic modes.

proof-assistant-table [Variable]
Proof General’s table of supported proof assistants.
This is copied from ‘proof-assistant-table-default’ at load time, removing any entries
that do not have a corresponding directory under ‘proof-home-directory’.

Each entry is a list of the form
(symbol name file-extension [AUTOMODE-REGEXP] [IGNORED-EXTENSIONS-LIST])

The name is a string, naming the proof assistant. The symbol is used to form the name of
the mode for the assistant, ‘SYMBOL-mode’, run when files with automode-regexp (or with
extension file-extension) are visited. If present, ignored-extensions-list is a list of file-name

4 Adapting Proof General

extensions to be ignored when doing file-name completion (ignored-extensions-list is added
to ‘completion-ignored-extensions’).

symbol is also used to form the name of the directory and elisp file for the mode, which will
be

proof-home-directory/symbol/symbol.el
where proof-home-directory is the value of the variable ‘proof-home-directory’.

The final step of the description above is where the work lies. There are two basic methods. You
can write some Emacs lisp functions and define the modes using the macro define-derived-
mode. Or you can use the new easy configuration mechanism of Proof General 3.0 described
in the next section, which calls define-derived-mode for you. You still need to know which
configuration variables should be set, and how to set them.

The documentation below (and inside Emacs) should help with that, but the best way to begin
might be to use an existing Proof General instance as an example.

1.2 Demonstration instance and easy configuration

Proof General is supplied with a demonstration instance for Isabelle which configures the basic
features. This is a whittled down version of Isabelle Proof General, which you can use as a
template to get support for a new assistant going. Check the directory demoisa for the two files
demoisa.el and demoisa-easy.el.

The file demoisa.el follows the scheme described in Section 1.3 [Major modes used by Proof
General], page 5. It uses the Emacs Lisp macro define-derived-mode to define the four modes
for a Proof General instance, by inheriting from the generic code. Settings which configure Proof
General are made by functions called from within each mode, as appropriate.

The file demoisa-easy.el uses a new simplified mechanism to achieve (virtually) the same
result. It uses the macro proof-easy-config defined in proof-easy-configl.el to make all
of the settings for the Proof General instance in one go, defining the derived modes automatically
using a regular naming scheme. No lisp code is used in this file except the call to this macro.
The minor difference in the end result is that all the variables are set at once, rather than inside
each mode. But since the configuration variables are all global variables anyway, this makes no
real difference.

The macro proof-easy-config is called like this:

(proof-easy-config myprover "MyProver"
config_1 val_1

config n val_n)

The main body of the macro call is like the body of a setq. It contains pairs of variables and
value settings. The first argument to the macro is a symbol defining the mode root, the second
argument is a string defining the mode name. These should be the same as the first part of
the entry in proof-assistant-table for your prover. See Section 1.1 [Overview of adding a
new prover|, page 3. After the call to proof-easy-config, the new modes myprover-mode,
myprover-shell-mode, myprover-response-mode, and myprover-goals-mode will be defined.
The configuration variables in the body will be set immediately.

This mechanism is in fact recommended for new instantiations of Proof General since it follows a
regular pattern, and we can more easily adapt it in the future to new versions of Proof General.
Even Emacs Lisp experts should prefer the simplified mechanism. If you want to set some buffer-
local variables in your Proof General modes, or invoke supporting lisp code, this can easily be
done by adding functions to the appropriate mode hooks after the proof-easy-config call. For
example, to add extra settings for the shell mode for demoisa, we could do this:

(defun demoisa-shell-extra-config ()

Chapter 1: Beginning with a New Prover 5

extra configuration ...
)

(add-hook 'demoisa-shell-mode-hook 'demoisa-shell-extra-config)

The function to do extra configuration demoisa-shell-extra-config is then called as the final
step when demoisa-shell-mode is entered (be wary, this will be after the generic proof-shell-
config-done is called, so it will be too late to set normal configuration variables which may be
examined by proof-shell-config-done).

1.3 Major modes used by Proof General

There are four major modes used by Proof General, one for each type of buffer it handles. The
buffer types are: script, shell, response and goals. Each of these has a generic mode, respectively:
proof-mode, proof-shell-mode, proof-response-mode, and proof-goals-mode.

The pattern for defining the major mode for an instance of Proof General is to use define-
derived-mode to define a specific mode to inherit from each generic one, like this:

(define-derived-mode myass-shell-mode proof-shell-mode

"MyAss shell" nil

(myass-shell-config)

(proof-shell-config-done))
Where myass-shell-config is a function which sets the configuration variables for the shell
(see Chapter 4 [Proof Shell Settings|, page 19).
It’s important that each of your modes invokes one of the functions proof-config-done, proof-
shell-config-done, proof-response-config-done, or proof-goals-config-done once it has
set its configuration variables. These functions finalize the configuration of the mode.
The modes must be named standardly, replacing proof- with the prover’s symbol name, PA-.
In other words, you must define PA-mode, PA-shell-mode, etc.

See the file demoisa.el for an example of the four calls to define-derived-mode.

Aside: notice that the modes are selected using stub functions inside proof-site.el, which set
the variables proof-mode-for-script, proof-mode-for-shell, etc, that actually select the
right mode. These variables are declared in pg-vars.el.

2 Menus, toolbar, and user-level commands

The variables described in this chapter configure the menus, toolbar, and user-level commands.
They should be set in the script mode before proof-config-done is called. (Toolbar configura-
tion must be made before proof-toolbar.el is loaded, which usually is triggered automatically
by an attempt to display the toolbar).

2.1 Settings for generic user-level commands

proof-assistant-home-page [Variable]
Web address for information on proof assistant.
Used for Proof General’s help menu.

proof-context-command [Variable]
Command to display the context in proof assistant.

proof-info-command [Variable]
Command to ask for help or information in the proof assistant.
String or fn. If a string, the command to use. If a function, it should return the command
string to insert.

proof-showproof-command [Variable]
Command to display proof state in proof assistant.

proof-goal-command [Variable]
Command to set a goal in the proof assistant. String or fn.
If a string, the format character ‘/%s’ will be replaced by the goal string. If a function, it
should return the command string to insert.

proof-save-command [Variable]
Command to save a proved theorem in the proof assistant. String or fn.
If a string, the format character ‘%s’ will be replaced by the theorem name. If a function, it
should return the command string to insert.

proof-find-theorems-command [Variable]
Command to search for a theorem containing a given term. String or fn.
If a string, the format character ‘%s’ will be replaced by the term. If a function, it should
return the command string to send.

2.2 Menu configuration

As well as the generic Proof General menu, each proof assistant is provided with a specific menu
which can have prover-specific commands. Proof General puts some default things on this menu,
including the commands to start/stop the prover, and the user-extensible "Favourites" menu.

PA-menu-entries [Variable]
Extra entries for proof assistant specific menu.
A list of menu items [name callback enabler ...]. See the documentation of ‘easy-menu-

define’ for more details.

PA-help-menu-entries [Variable]
Extra entries for help submenu for proof assistant specific help menu.
A list of menu items [name callback enabler ...]. See the documentation of ‘easy-menu-

define’ for more details.

8 Adapting Proof General

2.3 Toolbar configuration

Unlike the menus, Proof General has only one toolbar. For the "generic" aspect of Proof General
to work well, we shouldn’t change (the meaning of) the existing toolbar buttons too far. This
would discourage people from experimenting with different proof assistants when they don’t
really know them, which is one of the advantages that Proof General brings.

But in case it is hard to map some of the generic buttons onto functions in particular provers,
and to allow extra buttons, there is a mechanism for adjustment.

T used The Gimp to create the buttons for Proof General. The development distribution includes
a button blank and some notes in etc/notes.txt about making new buttons.

proof-toolbar-entries-default [Variable]
Example value for proof-toolbar-entries. Also used to define scripting menu.
This gives a bare toolbar that works for any prover, providing the appropriate configuration
variables are set. To add/remove prover specific buttons, adjust the ‘<PA>-toolbar-entries’
variable, and follow the pattern in ‘proof-toolbar.el’ for defining functions, images.

PA-toolbar-entries [Variable]
List of entries for Proof General toolbar and Scripting menu.
Format of each entry is (token menuname tooltip toolbar-p [VISIBLE-P]).

For each token, we expect an icon with base filename token, a function proof-toolbar-
<TOKEN>, and (optionally) a dynamic enabler proof-toolbar-<TOKEN>-enable-p.

If visible-p is absent, or evaluates to non-nil, the item will appear on the toolbar or menu. If
it evaluates to nil, the item is not shown.

If menuname is nil, item will not appear on the scripting menu.
If toolbar-p is nil, item will not appear on the toolbar.

The default value is ‘proof-toolbar-entries-default’ which contains the standard Proof
General buttons.

Here’s an example of how to remove a button, from af2.el:

(setq af2-toolbar-entries
(assq-delete-all 'state af2-toolbar-entries))

3 Proof Script Settings

The variables described in this chapter should be set in the script mode before proof-config-
done is called. These variables configure recognition of commands in the proof script, and also
control some of the behaviour of script management.

3.1 Recognizing commands and comments

The first four settings configure the generic parsing strategy for commands in the proof script.
Usually only one of these three needs to be set. If the generic parsing functions are not flexible
for your needs, you can supply a value for proof-script-parse-function.

Note that for the generic functions to work properly, it is essential that you set the syntax
table for your mode properly, so that comments and strings are recognized. See the Emacs
documentation to discover how to do this (particularly for the function modify-syntax-entry,
(see Section “Syntax Tables” in Elisp).

See Section 14.5 [Proof script mode], page 56, for more details of the parsing functions.

proof-terminal-string [Variable]
String that terminates commands sent to prover; nil if none.

To configure command recognition properly, you must set at least one of these: ‘proof-
script-sexp-commands’, ‘proof-script-command-end-regexp’, ‘proof-script-command-
start-regexp’, ‘proof-terminal-string’, or ‘proof-script-parse-function’.

proof-electric-terminator-noterminator [Variable]
If non-nil, electric terminator does not actually insert a terminator.

proof-script-sexp-commands [Variable]
Non-nil if script has Lisp-like syntax: commands are top-level sexps.
You should set this variable in script mode configuration.

To configure command recognition properly, you must set at least one of these: ‘proof-
script-sexp-commands’, ‘proof-script-command-end-regexp’, ‘proof-script-command-
start-regexp’, ‘proof-terminal-string’, or ‘proof-script-parse-function’.

proof-script-command-start-regexp [Variable]
Regular expression which matches start of commands in proof script.
You should set this variable in script mode configuration.

To configure command recognition properly, you must set at least one of these: ‘proof-
script-sexp-commands’, ‘proof-script-command-end-regexp’, ‘proof-script-command-
start-regexp’, ‘proof-terminal-string’, or ‘proof-script-parse-function’.

proof-script-command-end-regexp [Variable]
Regular expression which matches end of commands in proof script.
You should set this variable in script mode configuration.

The end of the command is considered to be the end of the match of this regexp. The
regexp may include a nested group, which can be used to recognize the start of the following
command (or white space). If there is a nested group, the end of the command is considered
to be the start of the nested group, i.e. (match-beginning 1), rather than (match-end 0).

To configure command recognition properly, you must set at least one of these: ‘proof-
script-sexp-commands’, ‘proof-script-command-end-regexp’, ‘proof-script-command-
start-regexp’, ‘proof-terminal-string’, or ‘proof-script-parse-function’.

The next four settings configure the comment syntax. Notice that to get reliable behaviour of
the parsing functions, you may need to modify the syntax table for your prover’s mode. Read
the Elisp manual (see Section “Syntax Tables” in Elisp) for details about that.

10 Adapting Proof General

proof-script-comment-start [Variable]
String which starts a comment in the proof assistant command language.
The script buffer’s ‘comment-start’ is set to this string plus a space. Moreover, comments
are usually ignored during script management, and not sent to the proof process.

You should set this variable for reliable working of Proof General, as well as ‘proof-script-
comment-end’.

proof-script-comment-start-regexp [Variable]
Regexp which matches a comment start in the proof command language.

The default value for this is set as (regexp-quote ‘proof-script-comment-start’) but you
can set this variable to something else more precise if necessary.

proof-script-comment-end [Variable]
String which ends a comment in the proof assistant command language.
Should be an empty string if comments are terminated by ‘end-of-1line’ The script buffer’s
‘comment-end’ is set to a space plus this string, if it is non-empty.
See also ‘proof-script-comment-start’.

You should set this variable for reliable working of Proof General.

proof-script-comment-end-regexp [Variable]
Regexp which matches a comment end in the proof command language.

The default value for this is set as (regexp-quote ‘proof-script-comment-end’) but you
can set this variable to something else more precise if necessary.

proof-case-fold-search [Variable]
Value for ‘case-fold-search’ when recognizing portions of proof scripts.
Also used for completion, via ‘proof-script-complete’. The default value is nil. If your
prover has a case insensitive input syntax, ‘proof-case-fold-search’ should be set to t
instead. NB: This setting is not used for matching output from the prover.

Finally, the function proof-looking-at-syntactic-context is used internally to help deter-
mine the syntactic structure of the buffer. You can test it to check the settings above. If
necessary, you can override this with a system-specific function.

proof-looking-at-syntactic-context [Function]
Determine if current point is at beginning or within comment /string context.
If so, return a symbol indicating this (‘comment or 'string). This function invokes
<PA-syntactic-context> if that is defined, otherwise it calls ‘proof-looking-at-syntactic-
context’.

3.2 Recognizing proofs

Several settings each may be supplied for recognizing goal-like and save-like commands. The
-with-hole- settings are used to make a record of the name of the theorem proved.

The -p subsidiary predicates were added to allow more discriminating behaviour for particular
proof assistants. (This is a typical example of where the core framework needs some additional
generalization, to simplify matters, and allow for a smooth handling of nested proofs; the present
state is only part of the way there).

proof-goal-command-regexp [Variable]
Matches a goal command in the proof script.
This is used to make the default value for ‘proof-goal-command-p’, used as an important
part of script management to find the start of an atomic undo block.

Chapter 3: Proof Script Settings 11

proof-goal-command-p [Variable]
A function to test: is this really a goal command span?

This is added as a more refined addition to ‘proof-goal-command-regexp’, to solve the
problem that Coq and some other provers can have goals which look like definitions, etc. (In
the future we may generalize ‘proof-goal-command-regexp’ instead).

proof-goal-with-hole-regexp [Variable]
Regexp which matches a command used to issue and name a goal.
The name of the theorem is built from the variable ‘proof-goal-with-hole-result’ using
the same convention as for ‘query-replace-regexp’. Used for setting names of goal..save
regions and for default configuration of other modes (function menu, imenu).

It’s safe to leave this setting as nil.

proof-goal-with-hole-result [Variable]
How to get theorem name after ‘proof-goal-with-hole-regexp’ match.
String or Int. If an int N, use ‘match-string’ to get the value of the Nth parenthesis
matched. If a string, use ‘replace-match’. In this case, ‘proof-goal-with-hole-regexp’
should match the entire command.

proof-save-command-regexp [Variable]
Matches a save command.

proof-save-with-hole-regexp [Variable]
Regexp which matches a command to save a named theorem.
The name of the theorem is built from the variable ‘proof-save-with-hole-result’ using
the same convention as ‘query-replace-regexp’. Used for setting names of goal..save and
proof regions.

It’s safe to leave this setting as nil.

proof-completed-proof-behaviour [Variable]
Indicates how Proof General treats commands beyond the end of a proof.
Normally goal...save regions are "closed", i.e. made atomic for undo. But once a proof has
been completed, there may be a delay before the "save" command appears — or it may not
appear at all. Unless nested proofs are supported, this can spoil the undo-behaviour in script
management since once a new goal arrives the old undo history may be lost in the prover.
So we allow Proof General to close off the goal..[save] region in more flexible ways. The
possibilities are:

nil - nothing special; close only when a save arrives
'closeany - close as soon as the next command arrives, save or not
'closegoal - close when the next "goal" command arrives
'extend - keep extending the closed region until a save or goal.

If your proof assistant allows nested goals, it will be wrong to close off the portion of proof
so far, so this variable should be set to nil.

NB: 'extend behaviour is not currently compatible with appearance of save commands, so
don’t use that if your prover has save commands.

proof-really-save-command-p [Variable]
Is this really a save command?

This is a more refined addition to ‘proof-save-command-regexp’. It should be a function
taking a span and command as argument, and can be used to track nested proofs.

12 Adapting Proof General

3.3 Recognizing other elements

To configure Imenu (which in turn configures Speedbar), you may use the following setting. If
this is unset, a generic setting based on proof-goal-with-hole-regexp is configured.

proof-script-imenu-generic-expression [Variable]
Regular expressions to help find definitions and proofs in a script.
Value for ‘imenu-generic-expression’, see documentation of Imenu and that variable for
details.

imenu-generic-expression [Variable]

The regex pattern to use for creating a buffer index.
If non-nil this pattern is passed to ‘imenu--generic-function’ to create a buffer index.
The value should be an alist with elements that look like this:

(menu-title regexp index)
or like this:

(menu-title regexp index function ARGUMENTS...)
with zero or more ARGUMENTS. The former format creates a simple element in the in-
dex alist when it matches; the latter creates a special element of the form (name func-
tion position-marker ARGUMENTS...) with function and arguments beiong copied from
‘imenu-generic-expression’.
menu-title is a string used as the title for the submenu or nil if the entries are not nested.

regexp is a regexp that should match a construct in the buffer that is to be displayed in the
menu; i.e., function or variable definitions, etc. It contains a substring which is the name to
appear in the menu. See the info section on Regexps for more information.

index points to the substring in regexp that contains the name (of the function, variable or
type) that is to appear in the menu.

The variable is buffer-local.

The variable ‘imenu-case-fold-search’ determines whether or not the regexp matches are
case sensitive. and ‘imenu-syntax-alist’ can be used to alter the syntax table for the search.

For example, see the value of ‘lisp-imenu-generic-expression’ used by ‘lisp-mode’ and
‘emacs-lisp-mode’ with ‘imenu-syntax-alist’ set locally to give the characters which nor-
mally have \"punctuation\" syntax \"word\" syntax during matching."

3.4 Configuring undo behaviour

The settings here are used to configure the way "undo" commands are calculated.

proof-non-undoables-regexp [Variable]
Regular expression matching commands which are not undoable.
These are commands which should not appear in proof scripts, for example, undo commands
themselves (if the proof assistant cannot "redo" an "undo"). Used in default functions
‘proof-generic-state-preserving-p’ and ‘proof-generic-count-undos’. If you don’t
use those, may be left as nil.

proof-undo-n-times-cmd [Variable]
Command to undo n steps of the currently open goal.
String or function. If this is set to a string, ‘%s’ will be replaced by the number of undo
steps to issue. If this is set to a function, it should return a list of the appropriate commands
(given the number of undo steps).

This setting is used for the default ‘proof-generic-count-undos’. If you set ‘proof-count-
undos-fn’ to some other function, there is no need to set this variable.

Chapter 3: Proof Script Settings 13

proof-ignore-for-undo-count [Variable]
Matcher for script commands to be ignored in undo count.
May be left as nil, in which case it will be set to ‘proof-non-undoables-regexp’. Used in
default function ‘proof-generic-count-undos’.

proof-count-undos-fn [Variable]
Function to calculate a list of commands to undo to reach a target span.
The function takes a span as an argument, and should return a string which is the command
to undo to the target span. The target is guaranteed to be within the current (open) proof.
This is an important function for script management. The default setting ‘proof-generic-
count-undos’ is based on the settings ‘proof-non-undoables-regexp’ and ‘proof-non-
undoables-regexp’.

proof-generic-count-undos span [Function]
Count number of undos in span, return commands needed to undo that far.
Command is set using ‘proof-undo-n-times-cmd’.

A default value for ‘proof-count-undos-fn’.

For this function to work properly, you must configure ‘proof-undo-n-times-cmd’ and
‘proof-ignore-for-undo-count’.

proof-find-and-forget-fn [Variable]
Function to return list of commands to forget to before its argument span.
This setting is used to for retraction (undoing) in proof scripts.

It should undo the effect of all settings between its target span up to (proof-unprocessed-
begin). This may involve forgetting a number of definitions, declarations, or whatever.

If return value is nil, it means there is nothing to do.

This is an important function for script management. Study one of the existing instantiations
for examples of how to write it, or leave it set to the default function ‘proof-generic-find-
and-forget’ (which see).

proof-generic-find-and-forget span [Function]
Calculate a forget /undo command to forget back to span.
This is a long-range forget: we know that there is no open goal at the moment, so forgetting
involves unbinding declarations, etc, rather than undoing proof steps.

This generic implementation assumes it is enough to find the nearest following span with a
‘name’ property, and retract that using ‘proof-forget-id-command’ with the given name.

If this behaviour is not correct, you must customize the function with something different.

proof-forget-id-command [Variable]
Command to forget back to a given named span.
A string; ‘%s’ will be replaced by the name of the span.

This is only used in the implementation of ‘proof-generic-find-and-forget’, you only
need to set if you use that function (by not customizing ‘proof-find-and-forget-fn’.

pg-topterm-goalhyplit-fn [Variable]
Function to return cons if point is at a goal/hypothesis/literal.
This is used to parse the proofstate output to mark it up for proof-by-pointing or literal
command insertion. It should return a cons or nil. First element of the cons is a symbol,
'goal', 'hyp' or 'lit'. The second element is a string: the goal, hypothesis, or literal
command itself.

If you leave this variable unset, no proof-by-pointing markup will be attempted.

14 Adapting Proof General

proof-kill-goal-command [Variable]
Command to kill the currently open goal.

If this is set to nil, PG will expect ‘proof-find-and-forget-fn’ to do all the work of
retracting to an arbitrary point in a file. Otherwise, the generic split-phase mechanism will
be used:

1. If inside an unclosed proof, use ‘proof-count-undos’. 2. If retracting to before an
unclosed proof, use ‘proof-kill-goal-command’, followed by ‘proof-find-and-forget-fn’
if necessary.

3.5 Nested proofs

Proof General allows configuration for provers which have particular notions of nested proofs.
The right thing may happen automatically, or you may need to adjust some of the following
settings.

First, you should alter the next setting if the prover retains history for nested proofs.

proof-nested-goals-history-p [Variable]
Whether the prover supports recovery of history for nested proofs.
If it does (non-nil), Proof General will retain history inside nested proofs. If it does not,
Proof General will amalgamate nested proofs into single steps within the outer proof.

Second, it may happen (i.e. it does for Coq) that the prover has a history mechanism which
necessitates keeping track of the number of nested "undoable" commands, even if the history of
the proof itself is lost.

proof-nested-undo-regexp [Variable]
Regexp for commands that must be counted in nested goal-save regions.

Used for provers which allow nested atomic goal-saves, but with some nested history that
must be undone specially.

At the moment, the behaviour is that a goal-save span has a 'nestedundos property which
is set to the number of commands within it which match this regexp. The idea is that the
prover-specific code can create a customized undo command to retract the goal-save region,
based on the 'nestedundos setting. Coq uses this to forget declarations, since declarations
in Coq reside in a separate context with its own (flat) history.

3.6 Omitting proofs for speed

In normal operation, the commands in an asserted region are sent successively to the proof assis-
tant. When the proof assistant reports an error, processing stops. This ensures the consistency
of the development. Proof General supports omitting portions of the asserted region to speed
processing up at the cost of consistency. Portions that can be potentially omitted are called
opaque proofs in Proof General, because usually only opaque proofs (in the sense of Coq) can be
omitted without risking to break the following code. This feature is also described in the Proof
General manual, see Section “Script processing commands” in ProofGeneral and see Section
“Omitting proofs for speed” in ProofGeneral.

The omit proofs feature works in a simple, straightforward way: After parsing the asserted re-
gion, Proof General uses regular expressions to search for commands that start (proof-script-
proof-start-regexp) and end (proof-script-proof-end-regexp) an opaque proof. If one is
found, the opaque proof is replaced with a cheating command (proof-script-proof-admit-
command). From this description it is immediate, that the omit proof feature does only work if
proofs are not nested. If a nested proof is found, a warning is displayed and omitting proofs
stops at that location for the currently asserted region.

Chapter 3: Proof Script Settings 15

In Coq, commands with non-local effects, such as Hint, may appear inside proofs. Additionally,
admitting a proof of a Let declaration causes a warning in Coq. To treat such cases, the pred-
icate proof-script-cmd-prevents-proof-omission is applied to all commands inside proofs
and the regular expression proof-script-cmd-force-next-proof-kept is matched against all
commands outside proofs. In case of a hit, the current or, respectively, the next proof is treated
as non-opaque and is not omitted. Note that a match of proof-script-cmd-force-next-
proof-kept is only handled if the matching command and the following proof appear in the
same asserted region. If the proof is asserted separately, the information about the match in the
previously asserted region is lost and the proof may thus be omitted.

To enable the omit proofs feature, the following settings must be configured.

proof-omit-proofs-configured [Variable]
t if the omit proofs feature has been configured by the proof assitant.
See also ‘proof-omit-proofs-option’ or the Proof General manual for a description of
the feature. This option can only be set, if all of ‘proof-script-proof-start-regexp’,
‘proof-script-proof-end-regexp’, ‘proof-script-definition-end-regexp’ and ‘proof-
script-proof-admit-command’ have been configured.

The omit proofs feature skips over opaque proofs in the source code, admitting the theorems,
to speed up processing.

If ‘proof-omit-proofs-option’ is set by the user, all proof commands in the source fol-
lowing a match of ‘proof-script-proof-start-regexp’ up to and including the next
match of ‘proof-script-proof-end-regexp’, are omitted (not send to the proof assis-
tant) and replaced by ‘proof-script-proof-admit-command’. If a match for ‘proof-
script-definition-end-regexp’ is found while searching forward for the proof end or if
‘proof-script-cmd-prevents-proof-omission’ recognizes a proof command that prevents
proof omission then the current proof (up to and including the match of ‘proof-script-
definition-end-regexp’ or ‘proof-script-proof-end-regexp’) is considered to be not
opaque and not omitted, thus all these proof commands _are_ sent to the proof assistant.

The feature does not work for nested proofs. If a match for ‘proof-script-proof-start-
regexp’ is found before the next match for ‘proof-script-proof-end-regexp’ or ‘proof-
script-definition-end-regexp’, the search for opaque proofs immediately stops and all
commands following the previous match of ‘proof-script-proof-start-regexp’ are sent
verbatim to the proof assistant.

All the regular expressions for this feature are matched against the commands inside proof
action items, that is as strings, without surrounding space.

proof-script-proof-start-regexp [Variable]
Regular expression for the start of a proof for the omit proofs feature.
See ‘proof-omit-proofs-configured’.

proof-script-proof-end-regexp [Variable]
Regular expression for the end of an opaque proof for the omit proofs feature.
See ‘proof-omit-proofs-configured’.

proof-script-definition-end-regexp [Variable]
Regexp for the end of a non-opaque proof for the omit proofs feature.
See ‘proof-omit-proofs-configured’.

proof-script-proof-admit-command [Variable]
Proof command to be inserted instead of omitted proofs.

16 Adapting Proof General

proof-script-cmd-prevents-proof-omission [Variable]
Optional predicate to match commands that prevent omitting the current proof.
If set, this option should contain a function that takes a proof command (as string) as
argument and returns t or nil. If set, the function is called on every proof command inside a
proof while scanning for proofs to omit. The predicate should return t if the command has
effects ouside the proof, potentially breaking the script if the current proof is omitted. If the
predicate returns t, the proof is considered to be not opaque and thus not omitted.

proof-script-cmd-force-next-proof-kept [Variable]
Optional regexp for commands that prevent omitting the next proof.
If set, this option should contain a regular expression that matches proof-script commands
that prevent the omission of proofs dirctly following this command. When scanning the newly
asserted region for proofs to omit, every proof-script command outside proofs is matched
against this regexp. If it matches and the next command matches ‘proof-script-proof-
start-regexp’ this following proof will not be omitted.

Note that recognition of commands with this regular expression does only work if the com-
mand and the following proof are asserted together.

3.7 Proof status statistic

The commands proof-check-report and proof-check-annotate build on the omit-proofs
feature. Using its machinery, proof-check-proofs, the inner working horse of both commands,
splits the current buffer into opaque proofs and all other material. The other material is asserted
in the usual way and proof-check-proofs aborts if it detects an error in there. For opaque
proofs it first tries to assert them in the usual way too. If this succeeds the proof is considered
valid. Otherwise the proof is replaced with proof-script-proof-admit-command and the proof
is considered invalid. In order to consider Admitted proofs as invalid ones, proofs whose last
command matches proof-omit-cheating-regexp count as invalid. To associate theorem names
with opaque proofs, the function proof-get-proof-info-fn is called, which is identical to
proof-tree-get-proof-info, See Section 12.4.1 [Proof Tree Elisp configuration], page 46.

To enable proof status statistics, the omit-proofs feature must be configured, See Section 3.6
[Omitting proofs for speed], page 14. Additionally, the following settings must be configured.

proof-get-proof-info-fn [Variable]
Return proof name and state number for ‘proof-check-proofs’.
Proof assistant specific function for ‘proof-check-proofs’. This function takes no argu-
ments, it is called after completely processing the proof script up to a certain point (including
all callbacks in spans). It must return a list, which contains, in the following order:

* the current state number (as positive integer) * the name of the current proof (as string)
or nil

The proof assistant should return to the same state when the state number is supplied
to ‘proof-retract-command-fn’. Processing the command returned by ‘proof-retract-
command-fn’ without processing any other command after calling this function should be a
no-op.

(This function has the same signature and specification as ‘proof-tree-get-proof-info’.)

proof-retract-command-fn [Variable]
Function for retract command to a certain state.
This function takes a state as argument as returned by ‘proof-get-proof-info-fn’. It
should return a command that brings the proof assistant back to the same state.

Chapter 3: Proof Script Settings 17

proof-omit-cheating-regexp [Variable]
Regular expression matching proof closing commands for incomplete proofs.
If set, this regular expression is applied to the last command of opaque proofs. If it matches
the proofs counts as invalid for the proof-status statistics and annotation feature. For Coq
this is used to mark Admitted proofs as invalid.

This option can be left at ‘nil’.

3.8 Safe (state-preserving) commands

A proof command is "safe" if it can be issued away from the proof script. For this to work it
should be state-preserving in the proof assistant (with respect to an on-going proof).

proof-state-preserving-p [Variable]
A predicate, non-nil if its argument (a command) preserves the proof state.
This is a safety-test used by ‘proof-minibuffer-cmd’ to filter out scripting commands which
should be entered directly into the script itself.

The default setting for this function, ‘proof-generic-state-preserving-p’ tests by negat-
ing the match on ‘proof-non-undoables-regexp’.

proof-generic-state-preserving-p cmd [Function]
Is emd state preserving? Match on ‘proof-non-undoables-regexp’.

3.9 Activate scripting hook

proof-activate-scripting-hook [Variable]
Hook run when a buffer is switched into scripting mode.
The current buffer will be the newly active scripting buffer.

This hook may be useful for synchronizing with the proof assistant, for example, to switch
to a new theory (in case that isn’t already done by commands in the proof script).

When functions in this hook are called, the variable ‘activated-interactively’ will be
non-nil if ‘proof-activate-scripting’ was called interactively (rather than as a side-effect
of some other action). If a hook function sends commands to the proof process, it should
wait for them to complete (so the queue is cleared for scripting commands), unless activated-
interactively is set.

3.10 Automatic multiple files
See Chapter 8 [Handling Multiple Files], page 35, for more details about this setting.

proof-auto-multiple-files [Variable]
Whether to use automatic multiple file management.
If non-nil, Proof General will automatically retract a script file whenever another one is
retracted which it depends on. It assumes a simple linear dependency between files in the
order which they were processed.

If your proof assistant has no management of file dependencies, or one which depends on a
simple linear context, you may be able to use this setting to good effect. If the proof assistant
has more complex file dependencies then you should configure it to communicate with Proof
General about the dependencies rather than using this setting.

18 Adapting Proof General

3.11 Completely asserted buffers

When switching scripting from buffer A to buffer B Proof General normally offers the choice of
either completely retracting or completely asserting buffer A. The option to completely assert
buffer A is offered, because the material in B may depend on A. Even if B does not depend
on A, it does no harm if one keeps the development of A loaded in the proof assistant. This
observation is true for many proof assistants.

One exception is Coq. Assume file B depends on file A. When Coq processes B it does not
read the sources of A. Instead it loads a compiled object representation of A. Therefore, when
switching from A to B, it does make no sense to keep the material of A loaded in the proof
assistant. For Coq, the material of A may even provoke errors on correct input. Therefore, for
coq, the right behaviour is to completely retract buffer A before switching to B.

proof-no-fully-processed-buffer [Variable]
Set to t if buffers should always retract before scripting elsewhere.
Leave at nil if fully processed buffers make sense for the current proof assistant. If nil the user
can choose to fully assert a buffer when starting scripting in a different buffer. If t there is
only the choice to fully retract the active buffer before starting scripting in a different buffer.
This last behavior is needed for Coq.

3.12 Completions

Proof General allows provers to create a completion table to help writing keywords and identifiers
in proof scripts. This is documented in the main Proof General user manual but summarized
here for (a different kind of) completion.

Completions are filled in according to what has been recently typed, from a database of symbols.
The database is automatically saved at the end of a session. Completion is usually a hand-wavy
thing, so we don’t make any attempt to maintain a precise completion table or anything.

The completion table maintained by complete.el is initialized from PA-completion-table
when proof-script.el is loaded. This is done with the function proof-add-completions
which you may want to call at other times.

PA-completion-table [Variable]
List of identifiers to use for completion for this proof assistant.
Completion is activated with M-x complete.

If this table is empty or needs adjusting, please make changes using ‘customize-variable’
and post suggestions at https://github.com/ProofGeneral /PG /issues

proof-add-completions [Command]|
Add completions from <PA>-completion-table to completion database.
Uses ‘add-completion’ with a negative number of uses and ancient last use time, to discour-
age saving these into the users database.

19

4 Proof Shell Settings

The variables in this chapter concern the proof shell mode, and are the largest group. They are
split into several subgroups. The first subgroup are commands invoked at various points. The
second subgroup of variables are concerned with matching the output from the proof assistant.
The final subgroup contains various hooks which you can set to add lisp customization to Proof
General in various points (some of them are also used internally for behaviour you may wish to
adjust).

Variables for configuring the proof shell are put into the customize group proof-shell.

These should be set in the shell mode configuration, before proof-shell-config-done is called.

To understand the way the proof assistant runs inside Emacs, you may want to refer to the
comint.el (Command interpreter) package distributed with Emacs. This package controls
several shell-like modes available in Emacs, including the proof-shell-mode and all specific
shell modes derived from it.

4.1 Commands

Settings in this section configure Proof General with commands to send to the prover to activate
certain actions.

proof-prog-name [Variable]
System command to run the proof assistant in the proof shell.
May contain arguments separated by spaces, but see also the prover specific settings
‘<PA>-prog-args’ and ‘<PA>-prog-env’.
Remark: if ‘<PA>-prog-args’ is non-nil, then ‘proof-prog-name’ is considered strictly: it
must contain only the program name with no option, spaces are interpreted literally as part
of the program name.

PA-prog-args [Variable]
Arguments to be passed to ‘proof-prog-name’ to run the proof assistant.
If non-nil, will be treated as a list of arguments for ‘proof-prog-name’. Otherwise ‘proof-
prog-name’ will be split on spaces to form arguments.

Remark: Arguments are interpreted strictly: each one must contain only one word, with no
space (unless it is the same word). For example if the arguments are -x foo -y bar, then the
list should be ’("-x" "foo" "-y" "bar"), notice that ’'("-x foo" "-y bar") is wrong.

PA-prog-env [Variable]
Modifications to ‘process-environment’ made before running ‘proof-prog-name’.
Each element should be a string of the form ENVVARNAME=value. They will be added
to the environment before launching the prover (but not pervasively). For example for coq
on Windows you might need something like: (setq cog-prog-env '("HOME=C:\Program
Files\Coq\"))

proof-shell-auto-terminate-commands [Variable]
Non-nil if Proof General should try to add terminator to every command.
If non-nil, whenever a command is sent to the prover using ‘proof-shell-invisible-
command’, Proof General will check to see if it ends with ‘proof-terminal-string’, and
add it if not. If ‘proof-terminal-string’ is nil, this has no effect.

proof-shell-pre-sync-init-cmd [Variable]
The command for configuring the proof process to gain synchronization.
This command is sent before Proof General’s synchronization mechanism is engaged, to allow
customization inside the process to help gain syncrhonization (e.g. engaging special markup).

20 Adapting Proof General

It is better to configure the proof assistant for this purpose via command line options if
possible, in which case this variable does not need to be set.

See also ‘proof-shell-init-cmd’.

proof-shell-init-cmd [Variable]
The command(s) for initially configuring the proof process.
This command is sent to the process as soon as synchronization is gained (when an annotated
prompt is first recognized). It can be used to configure the proof assistant in some way, or
print a welcome message (since output before the first prompt is discarded).

See also ‘proof-shell-pre-sync-init-cmd’.

proof-shell-restart-cmd [Variable]
A command for re-initialising the proof process.

proof-shell-quit-cmd [Variable]
A command to quit the proof process. If nil, send EOF instead.

proof-shell-cd-cmd [Variable]
Command to the proof assistant to change the working directory.
The format character ‘%s’ is replaced with the directory, and the escape sequences in ‘proof-
shell-filename-escapes’ are applied to the filename.

This setting is used to define the function ‘proof-cd’ which changes to the value of (default-
directory) for script buffers. For files, the value of (default-directory) is simply the
directory the file resides in.

NB: By default, ‘proof-cd’ is called from ‘proof-activate-scripting-hook’, so that the
prover switches to the directory of a proof script every time scripting begins.

proof-shell-start-silent-cmd [Variable]
Command to turn prover goals output off when sending many script commands.
If non-nil, Proof General will automatically issue this command to help speed up processing
of long proof scripts. See also ‘proof-shell-stop-silent-cmd’. NB: terminator not added
to command.

proof-shell-stop-silent-cmd [Variable]
Command to turn prover output on.
If non-nil, Proof General will automatically issue this command to help speed up processing
of long proof scripts. See also ‘proof-shell-start-silent-cmd’. NB: Terminator not added
to command.

proof-shell-silent-threshold [Variable]
Number of waiting commands in the proof queue needed to trigger silent mode.
Default is 2, but you can raise this in case switching silent mode on or off is particularly
expensive (or make it ridiculously large to disable silent mode altogether).

See Chapter 8 [Handling Multiple Files], page 35, for more details about the final two settings
in this group,

proof-shell-inform-file-processed-cmd [Variable]
Command to the proof assistant to tell it that a file has been processed.
The format character ‘%s’ is replaced by a complete filename for a script file which has been
fully processed interactively with Proof General. See ‘proof-format-filename’ for other
possibilities to process the filename.

This setting used to interface with the proof assistant’s internal management of multiple files,
so the proof assistant is kept aware of which files have been processed. Specifically, when

Chapter 4: Proof Shell Settings 21

scripting is deactivated in a completed buffer, it is added to Proof General’s list of processed
files, and the prover is told about it by issuing this command.

If this is set to nil, no command is issued.

See also: ‘proof-shell-inform-file-retracted-cmd’, ‘proof-shell-process-file’,
‘proof-shell-compute-new-files-list’.

proof-shell-inform-file-retracted-cmd [Variable]
Command to the proof assistant to tell it that a file has been retracted.
The format character ‘%s’ is replaced by a complete filename for a script file which Proof
General wants the prover to consider as not completely processed. See ‘proof-format-
filename’ for other possibilities to process the filename.

This is used to interface with the proof assistant’s internal management of multiple files,
so the proof assistant is kept aware of which files have been processed. Specifically, when
scripting is activated, the file is removed from Proof General’s list of processed files, and the
prover is told about it by issuing this command. The action may cause the prover in turn to
suggest to Proof General that files depending on this one are also unlocked.

If this is set to nil, no command is issued.

It is also possible to set this value to a function which will be invoked on the name of the
retracted file, and should remove the ancestor files from ‘proof-included-files-1list’ by
some other calculation.

See also: ‘proof-shell-inform-file-processed-cmd’, ‘proof-shell-process-file’,
‘proof-shell-compute-new-files-list’.

4.2 Script input to the shell

Generally, commands from the proof script are sent verbatim to the proof process running in
the proof shell. For historical reasons, carriage returns are stripped by default. You can set
proof-shell-strip-crs-from-input to adjust that. For more sophisticated pre-processing of
the sent string, you may like to set proof-shell-insert-hook.

proof-shell-strip-crs-from-input [Variable]
If non-nil, replace carriage returns in every input with spaces.
This is enabled by default: it is appropriate for many systems based on human input, because
several CR’s can result in several prompts, which may mess up the display (or even worse,
the synchronization).

If the prover can be set to output only one prompt for every chunk of input, then newlines
can be retained in the input.

proof-shell-insert-hook [Variable]
Hook run by ‘proof-shell-insert’ before inserting a command.
Can be used to configure the proof assistant to the interface in various ways — for example, to
observe or alter the commands sent to the prover, or to sneak in extra commands to configure
the prover.

This hook is called inside a ‘save-excursion’ with the ‘proof-shell-buffer’ current, just
before inserting and sending the text in the variable ‘string’. The hook can massage ‘string’
or insert additional text directly into the ‘proof-shell-buffer’. Before sending ‘string’,
it will be stripped of carriage returns.

Additionally, the hook can examine the variable ‘action’. It will be a symbol, set to the
callback command which is executed in the proof shell filter once ‘string’ has been processed.
The ‘action’ variable suggests what class of command is about to be inserted, the first two
are normally the ones of interest:

'proof-done-advancing A "forward" scripting command

22 Adapting Proof General

'proof-done-retracting A "backward" scripting command
'proof-done-invisible A non-scripting command
'proof-shell-set-silent Indicates prover output has been surpressed
'proof-shell-clear-silent Indicates prover output has been restored
'init-cmd Early initialization command sent to prover

Caveats: You should be very careful about setting this hook. Proof General relies on a careful
synchronization with the process between inputs and outputs. It expects to see a prompt for
each input it sends from the queue. If you add extra input here and it causes more prompts
than expected, things will break! Extending the variable ‘string’ may be safer than inserting
text directly, since it is stripped of carriage returns before being sent.

Example uses: Lego used this hook for setting the pretty printer width if the window width
has changed; Plastic used it to remove literate-style markup from ‘string’.

See also ‘proof-script-preprocess’ which can munge text when it is added to the queue
of commands.

4.3 Settings for matching various output from proof process

These settings control the way Proof General reacts to process output. The single most im-
portant setting is proof-shell-annotated-prompt-regexp, which must be set as part of the
prover configuraton. This is used to configure the communication with the prover process.

pg-subterm-first-special-char [Variable]
First special character.
Codes above this character can have special meaning to Proof General, and are stripped from
the prover’s output strings. Leave unset if no special characters are being used.

proof-shell-annotated-prompt-regexp [Variable]
Regexp matching a (possibly annotated) prompt pattern.
this IS THE most important setting TO configure!!
Output is grabbed between pairs of lines matching this regexp, and the appearance of this
regexp is used by Proof General to recognize when the prover has finished processing a
command.
To help speed up matching you may be able to annotate the proof assistant prompt with a
special character not appearing in ordinary output, which should appear in this regexp.

proof-shell-error-regexp [Variable]
Regexp matching an error report from the proof assistant.
We assume that an error message corresponds to a failure in the last proof command executed.
So don’t match mere warning messages with this regexp. Moreover, an error message should
not be matched as an eager annotation (see ‘proof-shell-eager-annotation-start’) oth-
erwise it will be lost.
Error messages are considered to begin from ‘proof-shell-error-regexp’ and continue until
the next prompt. The variable ‘proof-shell-truncate-before-error’ controls whether
text before the error message is displayed.

The engine matches interrupts before errors, see ‘proof-shell-interrupt-regexp’.

It is safe to leave this variable unset (as nil).

proof-shell-interrupt-regexp [Variable]
Regexp matching output indicating the assistant was interrupted.
We assume that an interrupt message corresponds to a failure in the last proof command exe-
cuted. So don’t match mere warning messages with this regexp. Moreover, an interrupt mes-
sage should not be matched as an eager annotation (see ‘proof-shell-eager-annotation-
start’) otherwise it will be lost.

Chapter 4: Proof Shell Settings 23

The engine matches interrupts before errors, see ‘proof-shell-error-regexp’.

It is safe to leave this variable unset (as nil).

proof-shell-truncate-before-error [Variable]
Non-nil means truncate output that appears before error messages.
If nil, the whole output that the prover generated before the last error message will be shown.

NB: the default setting for this is t to be compatible with behaviour in Proof General before
version 3.4. The more obvious setting for new instances is probably nil.

Interrupt messages are treated in the same way. See ‘proof-shell-error-regexp’ and
‘proof-shell-interrupt-regexp’.

proof-shell-proof-completed-regexp [Variable]
Regexp matching output indicating a finished proof.

When output which matches this regexp is seen, we clear the goals buffer in case this is not
also marked up as a ‘goals’ type of message.

We also enable the QED function (save a proof) and we may automatically close off the
proof region if another goal appears before a save command, depending on whether the
prover supports nested proofs or not.

proof-shell-start-goals-regexp [Variable]
Regexp matching the start of the proof state output.
This is an important setting. Output between ‘proof-shell-start-goals-regexp’ and
‘proof-shell-end-goals-regexp’ will be pasted into the goals buffer and possibly analysed
further for proof-by-pointing markup. If it is left as nil, the goals buffer will not be used.

The goals display starts at the beginning of the match on this regexp, unless it has a match
group, in which case it starts at (match-end 1).

proof-shell-end-goals-regexp [Variable]
Regexp matching the end of the proof state output, or nil.
This allows a shorter form of the proof state output to be displayed, in case several messages
are combined in a command output.
The portion treated as the goals output will be that between the match on ‘proof-shell-
start-goals-regexp’ (which see) and the start of the match on ‘proof-shell-end-goals-
regexp’.
If nil, use the whole of the output from the match on ‘proof-shell-start-goals-regexp’
up to the next prompt.

proof-shell-assumption-regexp [Variable]
A regular expression matching the name of assumptions.

At the moment, this setting is not used in the generic Proof General.

Future use may provide a generic implementation for ‘pg-topterm-goalhyplit-fn’, used to
help parse the goals buffer to annotate it for proof by pointing.

4.4 Settings for matching urgent messages from proof process

Among the various dialogue messages that the proof assistant outputs during proof, Proof
General can consider certain messages to be "urgent". When processing many lines of a proof,
Proof General will normally supress the output, waiting until the final message appears before
displaying anything to the user. Urgent messages escape this: typically they include messages
that the prover wants the user to notice, for example, perhaps, file loading messages, timing
statistics or dedicated tracing messages which can be sent to the *trace* buffer.

So that Proof General notices, these urgent messages should be marked-up with "eager" anno-
tations.

24 Adapting Proof General

proof-shell-eager-annotation-start [Variable]
Eager annotation field start. A regular expression or nil.
An "eager annotation indicates" to Proof General that some following output should be
displayed (or processed) immediately and not accumulated for parsing later. Note that this
affects processing of output which is ordinarily accumulated: output which appears before
the eager annotation start will be discarded.

The start/end annotations can be used to hilight the output, but are stripped from display
of the message in the minibuffer.

It is useful to recognize (starts of) warnings or file-reading messages with this regexp. You
must also recognize any special messages from the prover to PG with this regexp (e.g. ‘proof-
shell-clear-goals-regexp’, ‘proof-shell-retract-files-regexp’, etc.)

See also ‘proof-shell-eager-annotation-start-length’, ‘proof-shell-eager-
annotation-end’.

Set to nil to disable this feature.

proof-shell-eager-annotation-start-length [Variable]
Maximum length of an eager annotation start.
Must be set to the maximum length of the text that may match ‘proof-shell-eager-
annotation-start’ (at least 1). If this value is too low, eager annotations may be lost!

This value is used internally by Proof General to optimize the process filter to avoid unnec-
essary searching.

proof-shell-eager-annotation-end [Variable]
Eager annotation field end. A regular expression or nil.
An eager annotation indicates to Emacs that some following output should be displayed or
processed immediately.

See also ‘proof-shell-eager-annotation-start’.

It is nice to recognize (ends of) warnings or file-reading messages with this regexp. You must
also recognize (ends of) any special messages from the prover to PG with this regexp (e.g.
‘proof-shell-clear-goals-regexp’, ‘proof-shell-retract-files-regexp’, etc.)

The default value is "\n" to match up to the end of the line.

The default action for urgent messages is to display them in the response buffer, highlighted.
But we also allow for some control messages, issued from the proof assistant to Proof General
and not intended for the user to see. These are recognized in the same way as urgent messages
(marked with eager annotations), so they will be acted on as soon as they are issued by the
prover.

proof-shell-clear-response-regexp [Variable]
Regexp matching output telling Proof General to clear the response buffer.

More precisely, this should match a string which is bounded by matches on ‘proof-shell-
eager—annotation-start’ and ‘proof-shell-eager-annotation-end’.

This feature is useful to give the prover more control over what output is shown to the user.
Set to nil to disable.

proof-shell-clear-goals-regexp [Variable]
Regexp matching output telling Proof General to clear the goals buffer.
More precisely, this should match a string which is bounded by matches on ‘proof-shell-
eager-annotation-start’ and ‘proof-shell-eager-annotation-end’.

This feature is useful to give the prover more control over what output is shown to the user.
Set to nil to disable.

Chapter 4: Proof Shell Settings 25

proof-shell-interactive-prompt-regexp [Variable]
Matches output from the prover which indicates an interactive prompt.
If we match this, we suppose that the prover has switched to an interactive diagnostic mode
which requires direct interaction with the shell rather than via script management. In this
case, the shell buffer will be displayed and the user left to their own devices.

Note: this should match a string which is bounded by matches on ‘proof-shell-eager-
annotation-start’ and ‘proof-shell-eager-annotation-end’.

proof-shell-trace-output-regexp [Variable]
Matches tracing output which should be displayed in trace buffer.
Each line which matches this regexp but would otherwise be treated as an ordinary response,
is sent to the trace buffer instead of the response buffer.

This is intended for unusual debugging output from the prover, rather than ordinary output
from final proofs.

This should match a string which is bounded by matches on ‘proof-shell-eager-
annotation-start’ and ‘proof-shell-eager-annotation-end’.

Set to nil to disable.

proof-shell-theorem-dependency-list-regexp [Variable]
Matches output telling Proof General about dependencies.
This is to allow navigation and display of dependency information. The output from the
prover should be a message with the form

dependencies OF X Y Z ARE A B C

with X Y Z, A B C separated by whitespace or somehow else (see ‘proof-shell-theorem-
dependency-list-split’. This variable should be set to a regexp to match the overall
message (which should be an urgent message), with two sub-matches for X Y Z and A B C.

This is an experimental feature, currently work-in-progress.

Two important control messages are recognized by proof-shell-process-file and proof-
shell-retract-files-regexp, used for synchronizing Proof General with a file loading mech-
anism built into the proof assistant. See Chapter 8 [Handling Multiple Files], page 35, for more
details about how to use the final four settings described here.

proof-shell-process-file [Variable]
A pair (regexp . function) to match a processed file name.

If regexp matches output, then the function function is invoked. It must return the name
of a script file (with complete path) that the system has successfully processed. In practice,
function is likely to inspect the match data. If it returns the empty string, the file name of
the scripting buffer is used instead. If it returns nil, no action is taken.

More precisely, regexp should match a string which is bounded by matches on ‘proof-shell-
eager—annotation-start’ and ‘proof-shell-eager-annotation-end’.

Care has to be taken in case the prover only reports on compiled versions of files it is pro-
cessing. In this case, function needs to reconstruct the corresponding script file name. The
new (true) file name is added to the front of ‘proof-included-files-list’.

proof-shell-retract-files-regexp [Variable]
Matches a message that the prover has retracted a file.

More precisely, this should match a string which is bounded by matches on ‘proof-shell-
eager—annotation-start’ and ‘proof-shell-eager-annotation-end’.

At this stage, Proof General’s view of the processed files is out of date and needs to be
updated with the help of the function ‘proof-shell-compute-new-files-list’.

26 Adapting Proof General

proof-shell-compute-new-files-1list [Variable]
Function to update ‘proof-included-files list’.

It needs to return an up-to-date list of all processed files. The result will be stored in ‘proof-
included-files-1list’.

This function is called when ‘proof-shell-retract-files-regexp’ has been matched in
the prover output.

In practice, this function is likely to inspect the previous (global) variable ‘proof-included-
files-1ist’ and the match data triggered by ‘proof-shell-retract-files-regexp’.

proof-cannot-reopen-processed-files [Variable]
Non-nil if the prover allows re-opening of already processed files.

If the user has used Proof General to process a file incrementally, then PG will retain the
spans recording undo history in the buffer corresponding to that file (provided it remains
visited in Emacs).

If the prover allows, it will be possible to undo to a position within this file. If the prover does
not allow this, this variable should be set non-nil, so that when a completed file is activated
for scripting (to do undo operations), the whole history is discarded.

4.5 Hooks and other settings

proof-shell-filename-escapes [Variable]
A list of escapes that are applied to %s for filenames.
A list of cons cells, car of which is string to be replaced by the cdr. For example, when direc-
tories are sent to Isabelle, HOL, and Coq, they appear inside ML strings and the backslash
character and quote characters must be escaped. The setting

PCENNNAT L "N\
(ll\llll . II\\\IIH))

achieves this.

This setting is used inside the function ‘proof-format-filename’.

proof-shell-process-connection-type [Variable]
The value of ‘process-connection-type’ for the proof shell.
Set non-nil for ptys, nil for pipes.
note: In Emacs >= 24 (checked for 24 and 25.0.50.1), t is not a good choice: input is cut
after 4095 chars, which hangs pg.

proof-shell-handle-error-or-interrupt-hook [Variable]
Run after an error or interrupt has been reported in the response buffer.
Hook functions may inspect ‘proof-shell-last-output-kind’ to determine whether the
cause was an error or interrupt. Possible values for this hook include:
‘proof-goto-end-of-locked-on-error-if-pos-not-visible-in-window’
‘proof-goto-end-of-locked-if-pos-not-visible-in-window’
which move the cursor in the scripting buffer on an error or error/interrupt.

Remark: This hook is called from shell buffer. If you want to do something in scripting
buffer, ‘save-excursion’ and/or ‘set-buffer’.

proof-shell-pre-interrupt-hook [Variable]
Run immediately after ‘comint-interrupt-subjob’ is called.
This hook is added to allow customization for systems that query the user before returning
to the top level.

Chapter 4: Proof Shell Settings 27

proof-shell-handle-output-system-specific [Variable]
Set this variable to handle system specific output.
Errors and interrupts are recognised in the function ‘proof-shell-handle-immediate-
output’. Later output is handled by ‘proof-shell-handle-delayed-output’, which dis-
plays messages to the user in goals and response buffers.

This hook can run between the two stages to take some effect.

It should be a function which is passed (cmd string) as arguments, where ‘cmd’ is a string
containing the currently processed command and ‘string’ is the response from the proof
system. If action is taken and goals/response display should be prevented, the function
should update the variable ‘proof-shell-last-output-kind’ to some non-nil symbol.

The symbol will be compared against standard ones, see documentation of ‘proof-shell-
last-output-kind’. A suggested canonical non-standard symbol is 'systemspecific.

5 Goals Buffer Settings

29

The goals buffer settings allow configuration of Proof General for proof by pointing or similar
features. See the Proof General documentation web page (https://proofgeneral.github.
io/doc) for a link to the technical report ECS-LFCS-97-368 which hints at how to use these

settings.

pg-goals—-change-goal
Command to change to the goal ‘%s’.

pbp-goal-command
Command sent when ‘pg-goals-button-action’ is requested on a goal.

pbp-hyp-command

Command sent when ‘pg-goals-button-action’ is requested on an assumption.

pg-goals—-error-regexp
Regexp indicating that the proof process has identified an error.

proof-shell-result-start
Regexp matching start of an output from the prover after pbp commands.
In particular, after a ‘pbp-goal-command’ or a ‘pbp-hyp-command’.

proof-shell-result-end
Regexp matching end of output from the prover after pbp commands.
In particular, after a ‘pbp-goal-command’ or a ‘pbp-hyp-command’.

pg-subterm-start-char
Opening special character for subterm markup.

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

Subsequent special characters with values below ‘pg-subterm-first-special-char’ are as-
sumed to be subterm position indicators. Annotations should be finished with ‘pg-subterm-
sep-char’; the end of the concrete syntax is indicated by ‘pg-subterm-end-char’.

If ‘pg-subterm-start-char’ is nil, subterm markup is disabled.

pg-subterm-sep-char
Finishing special for a subterm markup.
See doc of ‘pg-subterm-start-char’.

pg-topterm-regexp
Annotation regexp that indicates the beginning of a "top" element.

[Variable]

[Variable]

A "top" element may be a sub-goal to be proved or a named hypothesis, for example. It

could also be a literal command to insert and send back to the prover.

The function ‘pg-topterm-goalhyplit-fn’ examines text following this special character,

to determine what kind of top element it is.

This setting is also used to see if proof-by-pointing features are configured. If it is unset,

some of the code for parsing the prover output is disabled.

pg-subterm-end-char
Closing special character for subterm markup.
See ‘pg-subterm-start-char’.

[Variable]

https://proofgeneral.github.io/doc
https://proofgeneral.github.io/doc

31

6 Splash Screen Settings

The splash screen can be configured, in a rather limited way.

proof-splash-time [Variable]
Minimum number of seconds to display splash screen for.
The splash screen may be displayed for a wee while longer than this, depending on how long
it takes the machine to initialise Proof General.

proof-splash-contents [Variable]
Evaluated to configure splash screen displayed when entering Proof General.
A list of the screen contents. If an element is a string or an image specifier, it is displayed
centred on the window on its own line. If it is nil, a new line is inserted.

33

7 Global Constants

The settings here are internal constants used by Proof General. You don’t need to configure
these for your proof assistant unless you want to modify or extend the defaults.

proof-general-name [Variable]
Proof General name used internally and in menu titles.

proof-general-home-page [User Option)]
Web address for Proof General.

The default value is "https://proofgeneral.github.io".

proof-universal-keys [Variable]
List of key bindings made for all proof general buffers.
Elements of the list are tuples ‘(k . £)’ where ‘k’ is a key binding (vector) and ‘f’ the

designated function.

35

8 Handling Multiple Files

Large proof developments are typically spread across multiple files. Many provers support such
developments by keeping track of dependencies and automatically processing scripts. Proof
General supports this mechanism. The user’s point of view is considered in the user manual.
Here, we describe the more technical nitty gritty. This is what you need to know when you
customise another proof assistant to work with Proof General.

Documentation for the configuration settings mentioned here appears in the previous sections,
this section is intended to help explain the use of those settings.

Proof General maintains a list proof-included-files-1list of files which it thinks have been
processed by the proof assistant. When a file which is on this list is visited in Emacs, it will
be coloured entirely blue to indicate that it has been processed. No editing of the file will be
allowed (unless proof-strict-read-only allows it).

proof-included-files-1list [Variable]
List of files currently included in proof process.
This list contains files in canonical truename format (see ‘file-truename’).

Whenever a new file is being processed, it gets added to this list via the ‘proof-shell-
process-file’ configuration settings. When the prover retracts a file, this list is resyn-
chronised via the ‘proof-shell-retract-files-regexp’ and ‘proof-shell-compute-new—
files-1list’ configuration settings.

Only files which have been fully processed should be included here. Proof General itself
will automatically add the filenames of a script buffer which has been completely read when
scripting is deactivated. It will automatically remove the filename of a script buffer which is
completely unread when scripting is deactivated.

NB: Currently there is no generic provision for removing files which are only partly read-in
due to an error, so ideally the proof assistant should only output a processed message when
a file has been successfully read.

The way that proof-included-files-1ist is maintained is the key to multiple file manage-
ment. Ideally you should not set this variable directly, but instead use (some of) the vari-
ous configuration settings that enable functionality inside Proof General for managing proof-
included-files-1list (see below if the configuration setting do not suffice).

There is a range of strategies for managing multiple files. Ideally, file dependencies should
be managed by the proof assistant. Proof General will use the prover’s low-level commands
to process a whole file and its requirements non-interactively, without going through script
management. So that the user knows which files have been processed, the proof assistant should
issue messages which Proof General can recognize (“file foo has been processed”) — see proof-
shell-process-file. When the user wants to edit a file which has been processed, the file
must be retracted (unlocked). The proof assistant should provide a command corresponding to
this action, which undoes a given file and all its dependencies. As each file is undone, a message
should be issued which Proof General can recognize (“file foo has been undone”) — see proof-
shell-retract-files-regexp. (The function proof-shell-compute-new-files-1ist should
be set to calculate the new value for proof-included-files-1list after a retract message has
been seen).

As well as this communication from the assistant to Proof General about processed or retracted
files, Proof General can communicate the other way: it will tell the proof assistant when it has
processed or retracted a file via script management. This is because during script management,
the proof assistant may not be aware that it is actually dealing with a file of proof commands
(rather than just terminal input).

36 Adapting Proof General

Proof General will provide this information in two special instances. First, when scripting is
turned off in a file that has been completely processed, Proof General will tell the proof assistant
using proof-shell-inform-file-processed-cmd. Second, when scripting is turned on in a file
which is completely processed, Proof General will tell the proof assistant to reconsider: the
file should not be considered completely processed yet. This uses the setting proof-shell-
inform-file-retracted-cmd. This second, retracting, case might lead to a series of messages
from the prover telling Proof General to unlock files which depend on the present one, again via
proof-shell-retract-files-regexp.

The special case for retracting is the primary file the user wishes to edit: this is automatically
removed from proof-included-files-1list, but it depends on the proof assistant whether or
not it is possible to revert to a partially processed version of the file (or "undo into" it). This
is the reason for the setting proof-cannot-reopen-processed-files. If this is non-nil, any
attempt to undo a fully processed file will unlock the entire file (whether or not Proof General
itself has history information for the file).

What we have described so far is the ideal case, but it may require some support from the proof
assistant to set up (for example, if file-level undo is not normally supported, or the messages
during file processing are not suitable). Moreover, some proof assistants may not have file
handling with dependencies, or may have a particularly simple case of a linear context: each file
depends on all the ones processed before it. Proof General allows you a shortcut to get automatic
management of multiple files in these cases by setting the flag proof-auto-multiple-files.
This setting is probably an approximation to the right thing for any proof assistant. More files
than necessary will be retracted if the prover has a tree-like file dependency rather than a linear
one.

Finally, we should mention how Proof General recognizes file processing messages from the proof
assistant. Proof General considers output delimited by the the two regular expressions proof-
shell-eager-annotation-start and proof-shell-eager-annotation-end as being impor-
tant. It displays the output in the Response buffer and analyses the contents further. Among
other important messages characterised by these regular expressions (warnings, errors, or infor-
mation), the prover can tell the interface whenever it processes or retracts a file.

To summarize, the settings for multiple file management that may be customized are as follows.
To recognize file-processing, proof-shell-process-file. To recognize messages about file
undoing, proof-shell-retract-files-regexp and proof-shell-compute-new-files-list.
See Section 4.4 [Settings for matching urgent messages from proof process|, page 23. To
tell the prover about files handled with script management, use proof-shell-inform-file-
processed-cmd and proof-shell-inform-file-retracted-cmd. See Section 4.1 [Proof shell
commands|, page 19. If your prover does not allow re-opening of closed files, set proof-cannot-
reopen-processed-files to t. Finally, set the flag proof-auto-multiple-files for a auto-
matic approximation to multiple file handling. See Chapter 3 [Proof Script Settings], page 9.

Internally Proof General uses proof-register-possibly-new-processed-file to add a file to
proof-included-files-1ist and to possibly inform the prover about this fact, See Section 14.5
[Proof script mode], page 56. The function proof-shell-process-urgent-message-retract
is responsible for taking (possibly several) files off proof-included-files-1list. It relies on
proof-shell-compute-new-files-1list (see Section 4.4 [Settings for matching urgent messages
from proof process|, page 23) to compute the new value of proof-included-files-list and
then calls proof-restart-buffers on all those buffers that have been taken off from proof-
included-files-1list, See Section 14.5 [Proof script mode], page 56.

37

9 Configuring Editing Syntax

Emacs has some standard settings which configure the syntax of major modes. The main
setting is the syntaz table, which determines the syntax of programming elements such as strings,
comments, and parentheses. To configure the syntax table, you can either write calls to modify-
syntax-entry in your mode functions, or set the following variables to contain the tables for
each mode. (The main mode to be concerned about is of course the proof script, where user
editing takes place).

proof-script-syntax-table-entries [Variable]
List of syntax table entries for proof script mode.
A flat list of the form

(char syncode char syncode ...)
See doc of ‘modify-syntax-entry’ for details of characters and syntax codes.

At present this is used only by the ‘proof-easy-config’ macro.

proof-shell-syntax-table-entries [Variable]
List of syntax table entries for proof script mode.
A flat list of the form

(char syncode char syncode ...)
See doc of ‘modify-syntax-entry’ for details of characters and syntax codes.

At present this is used only by the ‘proof-easy-config’ macro.
Some additional useful settings are:

comment-quote-nested [Variable]
Non-nil if nested comments should be quoted. This should be locally set by each major mode
if needed. The default setting is non-nil: modes which allow nested comments may set this
to nil.

outline-regexp [Variable]
Regular expression to match the beginning of a heading. Any line whose beginning matches
this regexp is considered to start a heading.

outline-heading-end-regexp [Variable]
Regular expression to match the beginning of a heading. Any line whose beginning matches
this regexp is considered to start a heading.

39

10 Configuring Font Lock

Support for Font Lock in Proof General is described in the user manual (see the Syntax high-
lighting section). To configure Font Lock for a new proof assistant, you need to set the variable
font-lock-keywords in each of the mode functions you want highlighting for. Proof General
will automatically install these settings, and use font lock minor mode (for syntax highlighting
as you type) in script buffers.

To understand its format, check the documentation of font-lock-keywords inside Emacs.

Instead of setting font-lock-keywords in each mode function, you can use the following four
variables to make the settings in place. This is particularly useful if use the easy configuration
mechanism for Proof General, see Section 1.2 [Demonstration instance and easy configuration],
page 4.

proof-script-font-lock-keywords [Variable]
Value of ‘font-lock-keywords’ used to fontify proof scripts.
The proof script mode should set this before calling ‘proof-config-done’. Used also
by ‘proof-easy-config’ mechanism. See also ‘proof-goals-font-lock-keywords’ and
‘proof-response-font-lock-keywords’.

proof-goals-font-lock-keywords [Variable]
Value of ‘font-lock-keywords’ used to fontify the goals output.
The goals shell mode should set this before calling ‘proof-goals-config-done’. Used also
by ‘proof-easy-config’ mechanism. See also ‘proof-script-font-lock-keywords’ and
‘proof-response-font-lock-keywords’.

proof-response-font-lock-keywords [Variable]
Value of ‘font-lock-keywords’ used to fontify the response output.
The response mode should set this before calling ‘proof-response-config-done’. Used also
by ‘proof-easy-config’ mechanism. See also ‘proof-script-font-lock-keywords’ and
‘proof-goals-font-lock-keywords’.

Proof General provides a special function, proof-zap-commas, for tweaking the font lock be-
haviour of provers which have declarations of the form x,y,z:Ty. This function removes high-
lighting on the commas, and can be added as the last element of font-lock-keywords. Further
manipulation of font lock behaviour can be achieved via two hook functions which are run before
and after fontifying the output buffers.

proof-zap-commas limit [Function]
Remove the face of all ‘,’ from point to limit.
Meant to be used from ‘font-lock-keywords’ as a way to unfontify commas in declarations
and definitions. Useful for provers which have declarations of the form x,y,z:Ty All that can
be said for it is that the previous ways of doing this were even more bogus....

pg-before-fontify-output-hook [Variable]
This hook is called before fontifying a region in an output buffer.
A function on this hook can alter the region of the buffer within the current restriction, and
must return the final value of (point-max). [This hook is presently only used by phox-sym-
lock].

pg-after-fontify-output-hook [Variable]
This hook is called before fonfitying a region in an output buffer.
[This hook is presently only used by Isabelle].

41

11 Configuring Tokens

Unicode Tokens is basically an overly complicated way of configuring font-lock, along with some
helpful menus. The font lock configuration makes use of recent Emacs features, particularly
including compose-region which allows the presentation of the buffer be different from the
underlying buffer contents. Compared with the X-Symbol package used previously by Proof
General, this has the huge advantage of not requiring the underlying text to be changed to
display symbols.

Usage of the Unicode Tokens package is described in the Proof General user manual, see Section
“Unicode symbols and special layout support” in ProofGeneral.

proof-tokens-activate-command [Variable]
Command to activate token input/output for prover.
If non-nil, this command is sent to the proof assistant when Unicode Tokens support is
activated.

proof-tokens-deactivate-command [Variable]
Command to deactivate token input/output for prover.
If non-nil, this command is sent to the proof assistant when Unicode Tokens support is
deactivated.

We expect tokens to be used uniformly, so that along with each script mode buffer, the response
buffer and goals buffer also invoke Tokens to display special characters in the same token lan-
guage. This happens automatically. If you want additional modes to use Tokens with the token
language for your proof assistant, you can set proof-tokens-extra-modes.

proof-tokens-extra-modes [Variable]
List of additional mode names to use with Proof General tokens.
These modes will have Tokens enabled for the proof assistant token language, in addition to
the four modes for Proof General (script, shell, response, pbp).

Set this variable if you want additional modes to also display tokens (for example, editing
documentation or source code files).

43

12 Configuring Proof-Tree Visualization

Parts of this section are outdated. Please create an issue at github.com/ProofGeneral/Proof
General if you have a question for adapting Prooftree for a new proof assistant.

The proof-tree visualization feature was written with the idea of supporting Coq as well as other
proof assistants. Nevertheless, supporting proof-tree visualization for a second proof assistant
will almost certainly require changes in the generic Elisp code in generic/proof-tree.el as
well as in the Prooftree program.

12.1 A layered set of proof trees

Prooftree can actually display more than one proof tree per proof. This is necessary to support
the Grab Existential Variables command in Coq. When the main goal has been proved, this
command turns all open existential variables into new proof obligations. All these new proof
obligations become root nodes for their own proof trees. When they all have been proved one
can again grab the open existential variables...

For each proof, Prooftree can therefore display several layers, where each layer can contain
several (graphically) independent proof trees. The first layer contains one tree for the original
proof goal. The second layer contains proof trees for goals that have been added to the proof
after the first proof tree was completed. And so on.

Prooftree assumes a new layer when it receives new goals in a state where the number of open
goals is zero.

12.2 Prerequisites

Proof-tree visualization requires certain support from the proof assistant. Patching the proof
assistant is therefore the first step of adding support for proof-tree visualization. The following
features are needed.

Unique goal identification
The proof assistant must assign and output a unique string for each goal. For Coq
the internal evar index number is used, which is printed for each goal in the form
(ID XXX) when Coq is started with the option -emacs.

The unique goal identification is needed to distinguish newly spawned subgoals from
older open subgoals and to mark the current goal in the proof-tree display.

Indication of newly generated subgoals
A proof command that spawns additional subgoals must somehow indicate the goal
ID’s of these new subgoals. Otherwise the proof-tree display will not be able to
reconstruct the proof-tree structure.

For Coq the newly spawned subgoals appear always in the list of additional subgoals
below the current goal. Note, that it is not required to mark the newly spawned
subgoals. They may appear in a mixed list with older open subgoals. Note further,
that it is not required that always the complete set of all open subgoals is printed
(which is indeed not the case after of Focus command in Coq). It is only required
that the goal ID’s of all newly spawned subgoals is somehow printed.

State number for undo
There must be a state number that is strictly increasing when asserting proof com-
mands and that is reset to the appropriate number after retracting some proof
commands.

For Coq the state number in the extended prompt (visible only with option -emacs)
is used.

44 Adapting Proof General

Information about existential variables
Existential variables are placeholders that might or must be instantiated later in the
proof. Prooftree supports existential variables with three features. Firstly, it can
update goals when existential variables get instantiated. Secondly, it can mark the
proof commands that introduced or instantiated existential variables and, thirdly,
it can display and track dependencies between existential variables.

For the first feature, the proof assistant must list the currently instantiated existen-
tial variables for every goal. For the second feature it must additionally list the not
instantiated existential variables. Finally, for the third feature, it must display the
dependencies for instantiated existential variables.

For Coq, all necessary information is provided in the existential evar line, that is
printed with the —emacs switch.

12.3 Proof-Tree Display Internals

This section gives some information about the inner structure of the code that realizes the proof-
tree display. The idea here is that this section provides the background information to make the
documentation of the customizable variables of the proof-tree Elisp code easy to understand.

12.3.1 Organization of the Code

The proof-tree display is realized by Proof General in cooperation with the external Prooftree
program. The latter is a GTK application in OCaml. Both, the Elisp code in Proof General
and the Prooftree OCaml code is divided into a generic and a proof assistant specific part.

The generic Elisp code lives in generic/proof-tree.el. As usual in Proof General, it contains
various customizable variables, which the proof assistant specific code must set. Most of these
variables contain regular expressions, but there are also some that hold functions. The Coq
specific code for the proof-tree display is distributed in a few chunks over coq/coq.el.

The main task of the Elisp code is to extract goals, undo events and information about existential
variables from the proof-assistant output and to send all this data to Prooftree. Additional com-
mands inserted by Prooftree are flagged with proof-tree-show-subgoal, no-goals-display
and no-response-display. The flag proof-tree-show-subgoal ensures that a number of in-
ternal functions ignore these additional commands. The other two flags ensure that their output
is neither displayed in the goals nor the response buffer.

In Prooftree the separation between generic and proof-assistant specific code is less obvious.
The Coq specific code is in the file coq.ml. All the remaining code is generic.

Prooftree opens for each proof a separate window. It reconstructs the proof tree and orders the
existential variables in a dependency hierarchy. It stores a complete history of previous states to
support arbitrary undo operations. Under normal circumstances one starts just one Prooftree
process that keeps running for the remainder of the Proof General session, regardless of how
many proof-tree windows are displayed.

A fair amount of the Prooftree code is documented with ocamldoc documentation comments.
With make doc they can be converted into a set of html pages in the doc subdirectory.

12.3.2 Communication

Prooftree is a standard Emacs subprocess that reads goals and other proof status messages
from its standard input. The communication between Proof General and Prooftree is almost
one way only. Proof General sends proof status messages to Prooftree, from which Prooftree
reconstructs the current proof status and the complete proof tree. Prooftree never requests
additional information from Proof General.

Chapter 12: Configuring Proof-Tree Visualization 45

There are only a few messages that Prooftree sends to Proof General. These messages commu-
nicate user requests to Proof General, for instance, when the user selects the undo menu item,
or when he closes the Prooftree window.

The communication protocol is completely described in the ocamldoc documentation of
input.ml in the Prooftree sources. All messages consist of UTF-8 encoded human-readable
strings. The strings have either a fixed length or their byte-length is encoded in the message
before the string itself.

For debugging purposes Prooftree can save all input in a file. This feature can be turned on in
the Debug tab of the Prooftree configuration dialog or with option -tee. The text that Prooftree
sends to Proof General can be found in buffer *proof-treex.

12.3.3 Guards

The proof-tree display code inside Proof General uses two guard variables.

proof-tree-configured [Variable]
Whether external proof-tree display is configured.
This boolean enables the proof-tree menu entry and the function that starts external proof-
tree display.

proof-tree-external-display [Variable]
Display proof trees in external prooftree windows if t.
Actually, if this variable is t then the user requested an external proof-tree display. If there
was no unfinished proof when proof-tree display was requested and if no proof has been
started since then, then there is obviously no proof-tree display. In this case, this variable
stays t and the proof-tree display will be started for the next proof.

Controlled by ‘proof-tree-external-display-toggle’.

In Proof General, the code for the external proof-tree display is called from the proof-shell
filter function in proof-shell-exec-loop and proof-shell-filter-manage-output, see Sec-
tion 14.6 [Proof shell mode], page 59. The variable proof-tree-external-display is a guard
for these calls, to ensure that the proof-tree specific code is only called if the user requested a
proof-tree display.

The whole proof-tree package contains only one function that can be called interactively: proof-
tree-external-display-toggle, which switches proof-tree-external-display on and off.
When proof-tree-configured is nil, proof-tree-external-display-toggle aborts with an
error message.

proof-tree-external-display-toggle [Command]|
Toggle the external proof-tree display.
When called outside a proof the external proof-tree display will be enabled for the next
proof. When called inside a proof the proof display will be created for the current proof. If
the external proof-tree display is currently on, then this toggle will switch it off. At the end
of the proof the proof-tree display is switched off.

12.3.4 Urgent and Delayed Actions

The proof-shell filter functions contains two calls to proof-tree specific code. One for urgent
actions and one for all remaining actions, that can be delayed.

Urgent actions are those that must be executed before proof-shell-exec-loop sends the next
item from proof-action-1list to the proof assistant. For execution speed, the amount of urgent
code should be kept small.

46 Adapting Proof General

proof-tree-check-proof-finish last-item [Function]
Urgent action to delay processing at proof end.
This function is called from ‘proof-shell-exec-loop’ after the old item has been removed
and before the next item from ‘proof-action-list’ is sent to the proof assistant. Of course
only when the proof-tree display is active. At the end of the proof, this function delays
items just following the previous proof until all show-goal commands from prooftree and the
‘proof-tree-display-stop-command’ (which switches the dependent evar line off for Coq)
have been processed.

If this function detects the end of the proof, it moves non-priority items following in ‘proof-
action-list’ to ‘proof-tree--delayed-actions’ and sets ‘proof-second-action-list-
active’. When later the command from ‘proof-tree-display-stop-command’ is recognized,
the items are moved back. If no items follow the end of the previous proof, ‘proof-tree-
display-stop-command’ is set to t.

The function proof-tree-check-proof-finish is called at a point where it is save to manip-
ulate proof-action-list. This is essential, because proof-tree-urgent-action inserts goal
display commands into proof-action-1list when existential variables got instantiated and when
the sequent text from newly created subgoals is missing.

Most of the proof-tree specific code runs when the proof assistant is already busy with the next
item from proof-action-list.

proof-tree-handle-delayed-output old-proof-marker cmd flags _span [Function]
Process delayed output for prooftree.
This function is the main entry point of the Proof General prooftree support. It examines
the delayed output in order to take appropriate actions and maintains the internal state.

The delayed output to handle is in the region [proof-shell-delayed-output-start, proof-
shell-delayed-output-end|. Urgent messages might be before that, following old-proof-
marker, which contains the position of ‘proof-marker’, before the next command was sent
to the proof assistant.

All other arguments are (former) fields of the ‘proof-action-1list’ entry that is now finally
retired. cmd is the command, flags are the flags and span is the span.

The function proof-tree-handle-delayed-output does all the communication with Prooftree.

12.3.5 Full Annotation

In the default configuration Proof General switches the proof assistant into quiet mode if there
are more than proof-shell-silent-threshold items in proof-action-1list, see Section Doc-
ument centred working (in Chapter Advanced Script Management and Editing) in the Proof
General users manual. The proof-tree display needs of course the full output from the proof
assistant. Therefore proof-shell-should-be-silent keeps the proof assistant noisy when the
proof-tree display is switched on.

12.4 Configuring Prooftree for a New Proof Assistant

To get the proof-tree display running for a new proof assistant one has to configure the proof-tree
Elisp code and adapt the Prooftree program.

12.4.1 Proof Tree Elisp configuration

All variables that need to be configured are in the customization group proof-tree-internals.
Most of these variables are regular expressions for extracting various parts from the proof assis-
tant output. However, some are functions that need to be implemented as prover specific part
of the proof display code.

Chapter 12: Configuring Proof-Tree Visualization 47

The variables proof-tree-configured, proof-tree-get-proof-info and proof-tree-find-
begin-of-unfinished-proof might be used before the proof assistant is running inside a proof
shell. They must therefore be configured as part of the proof assistant editing mode.

The other variables are only used when the proof shell is running. They can therefore be
configured with the proof assistant proof-shell mode.

12.4.2 Prooftree Adaption

To make the new proof assistant known to Prooftree, the match in function configure_
prooftree in input.ml must be extended. If the new proof assistant does not support existential
variables adding a line

| "new-pa-name" -> (O
suffices.

If the new prover supports existential variables, Prooftree must be extended with a parser for the
existential variable information printout of the proof assistant. The parser for Coq is contained
in the file coq.ml. Then the function configure_prooftree must assign this new parser to the
reference parse_existential_info.

49

13 Writing More Lisp Code

You may want to add some extra features to your instance of Proof General which are not
supported in the generic core. To do this, you can use the settings described above, plus a small
number of fundamental functions in Proof General which you can consider as exported in the
generic interface. Be careful using more functions than are mentioned here because the internals
of Proof General may change between versions.

13.1 Default values for generic settings

Several generic settings are defined using defpgcustom in proof-config.el. This introduces
settings of the form <PA>-name for each proof assistant PA.

To set the default value for these settings in prover-specific cases, you should use the special
defpgdefault macro:

defpgdefault [Macro]
Set, default for the proof assistant specific variable <PA>-sym to value.
This should be used in prover-specific code to alter the default values for prover specific
settings.

Usage: (defpgdefault SYM value)

In your prover-specific code you can simply use the setting <PA>-sym directly, i.e., write
myprover-home-page.

In the generic code, you can use a macro, writing (proof-ass home-page) to refer to the <PA>-
home-page setting for the currently running instance of Proof General.

See Section 14.3 [Configuration variable mechanisms]|, page 54, for more details on this mecha-
nism.

13.2 Adding prover-specific configurations
Apart from the generic settings, your prover instance will probably need some specific customiz-
able settings.
Defining new prover-specific settings using customize is pretty easy. You should do it at least
for your prover-specific user options.
The code in proof-site.el provides each prover with two customization groups automatically
(based on the name of the assistant): <PA> for user options for prover PA and <PA>-config
for configuration of prover PA. Typically <PA>-config holds settings which are constants but
which may be nice to tweak.
The first group appears in the menu

ProofGeneral -> Advanced -> Customize -> <PA>
The second group appears in the menu:

ProofGeneral -> Internals -> <PA> config
A typical use of defcustom looks like this:

(defcustom myprover-search-page

"http://findtheorem.myprover.org"

"URL of search web page for myprover."

:type 'string

:group 'myprover-config)
This introduces a new customizable setting, which you might use to make a menu entry, for
example. The default value is the string "http://findtheorem.myprover.org".

50 Adapting Proof General

13.3 Useful variables

In proof-site, some architecture flags are defined. These can be used to write conditional pieces
of code for different Emacs and operating systems. They are referred to mainly in proof-compat
(which helps to keep the architecture and version dependent code in one place).

13.4 Useful functions and macros

The recommended functions you may invoke are these:
e Any of the interactive commands (i.e. anything you can invoke with M-x, including all
key-bindings)
e Any of the internal functions and macros mentioned below

To insert text into the current (usually script) buffer, the function proof-insert is useful.
There’s also a handy macro proof-defshortcut for defining shortcut functions using it.

proof-insert text [Function]
Insert text into the current buffer.
text may include these special characters:

%p - place the point here after input
Any other %-prefixed character inserts itself.

proof-defshortcut [Macro]
Define shortcut function FN to insert string, optional keydef KEY.
This is intended for defining proof assistant specific functions. string is inserted using ‘proof-
insert’, which see. KEY is added onto proof assistant map.

The function proof-shell-invisible-command is a useful utility for sending a single command
to the process. You should use this to implement user-level or internal functions rather than
attempting to directly manipulate the proof action list, or insert into the shell buffer.

proof-shell-invisible-command cmd &optional wait invisiblecallback [Function]
&rest flags
Send cmd to the proof process.
The cmd is ‘invisible’ in the sense that it is not recorded in buffer. cmd may be a string
or a string-yielding expression.
Automatically add ‘proof-terminal-string’ if necessary, examining
‘proof-shell-no-auto-terminate-commands’.

By default, let the command be processed asynchronously. But if optional wait command is
non-nil, wait for processing to finish before and after sending the command.

In case cmd is (or yields) nil, do nothing.

invisiblecallback will be invoked after the command has finished, if it is set. It should probably
run the hook variables ‘proof-state-change-hook’.

flags are additional flags to put onto the ‘proof-action-list’. The flag 'invisible is
always added to flags.

There are several handy macros to help you define functions which invoke proof-shell-
invisible-command.

proof-definvisible [Macro]
Define function FN to send string to proof assistant, optional keydef KEY.
This is intended for defining proof assistant specific functions. string is sent using ‘proof-
shell-invisible-command’, which see. string may be a string or a function which returns
a string. KEY is added onto proof assistant map.

Chapter 13: Writing More Lisp Code 51

proof-define-assistant-command [Macro]
Define FN (docstring DOC): check if cmdvar is set, then send body to prover.
body defaults to cmdvar, a variable.

proof-define-assistant-command-witharg [Macro]
Define FN (arg) with DOC: check cmdvar is set, prompt a string and eval body.
The body can contain occurrences of arg. cmdvar is a variable holding a function or string.
Automatically has history.

proof-format-filename string filename [Function]
Format string by replacing quoted chars by escaped version of filename.

%e uses the canonicalized expanded version of filename (including directory, using ‘default-
directory’ — see ‘expand-file-name’).

%r uses the unadjusted (possibly relative) version of filename.

%m ('module’) uses the basename of the file, without directory or extension.

%s means the same as %e.

Using %e can avoid problems with dumb proof assistants who don’t understand ~, for exam-
ple.

For all these cases, the escapes in ‘proof-shell-filename-escapes’ are processed.

If string is in fact a function, instead invoke it on filename and return the resulting (string)
value.

53

14 Internals of Proof General

This chapter sketches some of the internal functions and variables of Proof General, to help
developers who wish to understand or modify the code.

Most of the documentation below is generated automatically from the comments in the code.
Because Emacs lisp is interpreted and self-documenting, the best way to find your way around
the source is inside Emacs once Proof General is loaded. Read the source files, and use functions
such as C-h v and C-h f.

The code is split into files. The following sections document the important files, kept in the
generic/ subdirectory.

14.1 Spans

Spans are an abstraction of Emacs overlays originally used to help bridge the gulf between GNU
Emacs and XEmacs. See the file 1ib/span.el. XEmacs calls these extents which is a name
still used in some parts of the code.

14.2 Proof General site configuration

The file proof-site.el contains the initial configuration for Proof General for the site (or user)
and the choice of provers.

The first part of the configuration is to set proof-home-directory to the directory that proof-
site.el is located in, or to the variable of the environment variable PROOFGENERAL_HOME if that
is set.

proof-home-directory [Variable]
Directory where Proof General is installed.
Based on where the file ‘proof-site.el’ was loaded from. Falls back to consulting the envi-
ronment variable ‘PROOFGENERAL_HOME’ if proof-site.el couldn’t know where it was executed
from.

Further directory variables allow the files of Proof General to be split up and installed across a
system if need be, rather than under the proof-home-directory root.

proof-images-directory [Variable]
Where Proof General image files are installed. Ends with slash.

proof-info-directory [Variable]
Where Proof General Info files are installed. Ends with slash.

After defining these settings, we define a mode stub for each proof assistant enabled. The
mode stub will autoload Proof General for the right proof assistant when a file is visited with
the corresponding extension. The proof assistants enabled are the ones listed in the proof-
assistants setting.

proof-assistants [Variable]
Choice of proof assistants to use with Proof General.
A list of symbols chosen from: ‘coq’ ‘easycrypt’ ‘phox’ ‘qrhl’ ‘pgshell’ ‘pgocaml’
‘pghaskell’. If nil, the default will be ALL available proof assistants.

Each proof assistant defines its own instance of Proof General, providing session control, script
management, etc. Proof General will be started automatically for the assistants chosen here.
To avoid accidently invoking a proof assistant you don’t have, only select the proof assistants
you (or your site) may need.

54 Adapting Proof General

You can select which proof assistants you want by setting this variable before ‘proof-site.el’
is loaded, or by setting the environment variable ‘PROOFGENERAL_ASSISTANTS’ to the symbols
you want, for example "coq easycrypt". Or you can edit the file ‘proof-site.el’ itself.

Note: to change proof assistant, you must start a new Emacs session.
The file proof-site.el also defines a version variable.

proof-general-version [Variable]
Version string identifying Proof General release.

14.3 Configuration variable mechanisms

The file proof-config.el defines the configuration variables for Proof General, including in-
stantiation parameters and user options. See previous chapters for details of its contents. Here
we mention some conventions for declaring user options.

Global user options and instantiation parameters are declared using defcustom as usual. User
options should have ‘*’ as the first character of their docstrings (standard Emacs convention)
and live in the customize group proof-user-options. See proof-config.el for the groups for
instantiation parameters.

User options which are generic (having separate instances for each prover) and instantiation
parameters (by definition generic) can be declared using the special macro defpgcustom. It
is used in the same way as defcustom, except that the symbol declared will automatically be
prefixed by the current proof assistant symbol.

defpgcustom [Macro]
Define a new customization variable <PA>-sym for the current proof assistant.
This is intended for defining settings which are useful for any prover, but which the user may
require different values of across provers.

The function proof-assistant-<SYM> is also defined, which can be used in the generic portion
of Proof General to access the value for the current prover.

Arguments args are as for ‘defcustom’, which see. If a :group argument is not supplied, the
setting will be added to the internal settings for the current prover (named <PA>-config).

In specific instances of Proof General, the macro defpgdefault can be used to give a default
value for a generic setting.

defpgdefault [Macro]
Set default for the proof assistant specific variable <PA>-sym to value.
This should be used in prover-specific code to alter the default values for prover specific
settings.

Usage: (defpgdefault SYM value)

All new instantiation variables are best declared using the defpgcustom mechanism (old code
may be converted gradually). Customizations which are liable to be different for different in-
stances of Proof General are also best declared in this way. An example is the use of X Symbol,
controlled by PA-x-symbol-enable, since it works poorly or not at all with some provers.

To access the generic settings, the following four functions and macros are useful.

proof-ass [Macro]
Return the value for SYM for the current prover.
This macro should only be invoked once a specific prover is engaged.

Chapter 14: Internals of Proof General 55

proof-ass-sym [Macro]
Return the symbol for SYM for the current prover. SYM not evaluated.
This macro should only be called once a specific prover is known.

proof-ass-symv [Macro]
Return the symbol for SYM for the current prover. SYM evaluated.
This macro should only be invoked once a specific prover is engaged.

If changing a user option setting amounts to more than just setting a variable (it may have some
dynamic effect), we can set the custom-set property for the variable to the function proof-
set-value which does an ordinary set-default to set the variable, and then calls a function
with the same name as the variable, to do whatever is necessary according to the new value for
the variable.

There are several settings which can be switched on or off by the user, which use this proof-set-
value mechanism. They are controlled by boolean variables with names like proof-foo-enable,
and appear at the start of the customize group proof-user-options. They should be edited
by the user through the customization mechanism, and set in the code using customize-set-
variable.

In proof-utils.el there is a handy macro, proof-deftoggle, which constructs an interactive
function for toggling boolean customize settings. We can use this to make an interactive function
proof-foo-toggle to put on a menu or bind to a key, for example.

This general scheme is followed as far as possible, to give uniform behaviour and appearance for
boolean user options, as well as interfacing properly with the customize mechanism.

proof-set-value sym value [Function]
Set a customize variable using ‘set-default’ and a function.
We first call ‘set-default’ to set sym to value. Then if there is a function sym (i.e. with the
same name as the variable sym), it is called to take some dynamic action for the new setting.

If there is no function sym, we try stripping ‘proof-assistant-symbol’ and adding "proof-
" instead to get a function name. This extends proof-set-value to work with generic
individual settings.

The dynamic action call only happens when values change: as an approximation we test
whether proof-config is fully-loaded yet.

proof-deftoggle [Macro]
Define a function VAR-toggle for toggling a boolean customize setting VAR.
The toggle function uses ‘customize-set-variable’ to change the variable. othername
gives an alternative name than the default <VAR>-toggle. The name of the defined function
is returned.

14.4 Global variables

Global variables are defined in proof.el. The same file defines a few utility functions and some
triggers to load in the other files.

proof-script-buffer [Variable]
The currently active scripting buffer or nil if none.

proof-shell-buffer [Variable]
Process buffer where the proof assistant is run.

proof-response-buffer [Variable]
The response buffer.

56 Adapting Proof General

proof-goals-buffer [Variable]
The goals buffer.

proof-buffer-type [Variable]
Symbol for the type of this buffer: 'script, 'shell, 'goals, or 'response.

proof-included-files-list [Variable]
List of files currently included in proof process.
This list contains files in canonical truename format (see ‘file-truename’).

Whenever a new file is being processed, it gets added to this list via the ‘proof-shell-
process-file’ configuration settings. When the prover retracts a file, this list is resyn-
chronised via the ‘proof-shell-retract-files-regexp’ and ‘proof-shell-compute-new-
files-1list’ configuration settings.

Only files which have been fully processed should be included here. Proof General itself
will automatically add the filenames of a script buffer which has been completely read when
scripting is deactivated. It will automatically remove the filename of a script buffer which is
completely unread when scripting is deactivated.

NB: Currently there is no generic provision for removing files which are only partly read-in
due to an error, so ideally the proof assistant should only output a processed message when
a file has been successfully read.

proof-shell-proof-completed [Variable]
Flag indicating that a completed proof has just been observed.
If non-nil, the value counts the commands from the last command of the proof (starting from

1).

proof-shell-error-or-interrupt-seen [Variable]
Flag indicating that an error or interrupt has just occurred.
Set to 'error or 'interrupt if one was observed from the proof assistant during the last
group of commands.

14.5 Proof script mode

The file proof-script.el contains the main code for proof script mode, as well as definitions
of menus, key-bindings, and user-level functions.

Proof scripts have two important variables for the locked and queue regions. These variables
are local to each script buffer (although we only really need one queue span in total rather than
one per buffer).

proof-locked-span [Variable]
The locked span of the buffer.
Each script buffer has its own locked span, which may be detached from the buffer. Proof
General allows buffers in other modes also to be locked; these also have a non-nil value for
this variable.

proof-queue-span [Variable]
The queue span of the buffer. May be detached if inactive or empty.
Each script buffer has its own queue span, although only the active scripting buffer may have
an active queue span.

Various utility functions manipulate and examine the spans. An important one is proof-init-
segmentation.

Chapter 14: Internals of Proof General 57

proof-init-segmentation [Function]
Initialise the queue and locked spans in a proof script buffer.
Allocate spans if need be. The spans are detached from the buffer, so the regions are made
empty by this function. Also clear list of script portions.

For locking files loaded by a proof assistant, we use the next function.

proof-complete-buffer-atomic buffer [Function]
Ensure buffer marked completely processed, completing with a single step.

If buffer already contains a locked region, only the remainder of the buffer is closed off
atomically (although undo for the initial portion is unlikely to work, the decoration may be
worth retaining).

This works for buffers which are not in proof scripting mode too, to allow other files loaded
by proof assistants to be marked read-only.

Atomic locking is instigated by the next function, which uses the variables proof-included-
files-list documented earlier (see Chapter 8 [Handling Multiple Files], page 35, and see
Section 14.4 [Global variables|, page 55).

proof-register-possibly-new-processed-file file &optional [Function]
informprover noquestions
Register a possibly new file as having been processed by the prover.

If informprover is non-nil, the proof assistant will be told about this, to co-ordinate with its
internal file-management. (Otherwise we assume that it is a message from the proof assistant
which triggers this call). In this case, the user will be queried to save some buffers, unless
noquestions is non-nil.

No action is taken if the file is already registered.

A warning message is issued if the register request came from the proof assistant and Emacs
has a modified buffer visiting the file.

(Unlocking is done by proof-shell-process-urgent-message-retract together with proof-
restart-buffers.)

An important pair of functions activate and deactivate scripting for the current buffer. A change
in the state of active scripting can trigger various actions, such as starting up the proof assistant,
or altering proof-included-files-1list.

proof-activate-scripting &optional nosaves queuemode [Command]
Ready prover and activate scripting for the current script buffer.

The current buffer is prepared for scripting. No changes are necessary if it is already in
Scripting minor mode. Otherwise, it will become the new active scripting buffer, provided
scripting can be switched off in the previous active scripting buffer with ‘proof-deactivate-
scripting’.

Activating a new script buffer is a good time to ask if the user wants to save some buffers;
this is done if the user option ‘proof-query-file-save-when-activating-scripting’ is
set and provided the optional argument nosaves is non-nil.

The optional argument queuemode relaxes the test for a busy proof shell to allow one which
has mode queuemode. In all other cases, a proof shell busy error is given.

Finally, the hooks ‘proof-activate-scripting-hook’ are run. This can be a useful place to
configure the proof assistant for scripting in a particular file, for example, loading the correct
theory, or whatever. If the hooks issue commands to the proof assistant (via ‘proof-shell-
invisible-command’) which result in an error, the activation is considered to have failed and
an error is given.

58 Adapting Proof General

proof-deactivate-scripting &optional forcedaction [Command]
Try to deactivate scripting for the active scripting buffer.

Aims to set ‘proof-script-buffer’ to nil and turn off the modeline indicator. No action is
required there is no active scripting buffer.

We make sure that the active scripting buffer either has no locked region or a full locked
region (everything in it has been processed). If this is not already the case, we question the
user whether to retract or assert, or automatically take the action indicated in the user option
‘proof-auto-action-when-deactivating-scripting’.

If ‘proof-no-fully-processed-buffer’ is t there is only the choice to fully retract the
active scripting buffer. In this case the active scripting buffer is retracted even if it was fully
processed. Setting ‘proof-auto-action-when-deactivating-scripting’ to 'process is
ignored in this case.

If the scripting buffer is (or has become) fully processed, and it is associated with a file, it is
registered on ‘proof-included-files-1list’. Conversely, if it is (or has become) empty, we
make sure that it is not registered. This is to be certain that the included files list behaves
as we might expect with respect to the active scripting buffer, in an attempt to harmonize
mixed scripting and file reading in the prover.

This function either succeeds, fails because the user refused to process or retract a partly
finished buffer, or gives an error message because retraction or processing failed. If this
function succeeds, then ‘proof-script-buffer’ is nil afterwards.

The optional argument forcedaction overrides the user option ‘proof-auto-action-when-
deactivating-scripting’ and prevents questioning the user. It is used to make a value for
the ‘kill-buffer-hook’ for scripting buffers, so that when a scripting buffer is killed it is
always retracted.

The function proof-segment-up-to is the main one used for parsing the proof script buffer.
There are several variants of this function available corresponding to different parsing strate-
gies; the appropriate one is aliased to proof-segment-up-to according to which configuration
variables have been set.

e If proof-script-sexp-commands is set, the choice is proof-script-generic-parse-sexp.
item If only proof-script-command-end-regexp or proof-terminal-string are set, then
the default is proof-script-generic-parse-cmdend.

e If proof-script-command-start-regexp is set, the choice is proof-script-generic-
parse-cmdstart.

The function proof-semis-to-vanillas uses proof-segment-up-to to convert a parsed region
of the script into a series of commands to be sent to the proof assistant.

proof-script-generic-parse-cmdend [Function]
For ‘proof-script-parse-function’ if ‘proof-script-command-end-regexp’ set.

proof-script-generic-parse-cmdstart [Function]
For ‘proof-script-parse-function’ if ‘proof-script-command-start-regexp’ is set.

proof-script-generic-parse-sexp [Function]
Used for ‘proof-script-parse-function’ if ‘proof-script-sexp-commands’ is set.

proof-semis-to-vanillas semis &optional queueflags [Function]
Create vanilla spans for semis and a list for the queue.
Proof terminator positions semis has the form returned by the function
‘proof-segment-up-to’. The argument list is destroyed. The callback in each
queue element is ‘proof-done-advancing’.

Chapter 14: Internals of Proof General 59

If the variable ‘proof-script-preprocess’ is set (to the name of a function), call that
function to construct the first element of each queue item.

The optional queueflags are added to each queue item.

The function proof-assert-until-point is the main one used to process commands in the
script buffer. It’s actually used to implement the assert-until-point, electric terminator keypress,
and find-next-terminator behaviours. In different cases we want different things, but usually the
information (i.e. are we inside a comment) isn’t available until we’ve actually run proof-
segment-up-to (point), hence all the different options when we’ve done so.

proof-assert-until-point &optional displayflags [Function]
Process the region from the end of the locked-region until point.

The main command for retracting parts of a script is proof-retract-until-point.

proof-retract-until-point &optional undo-action displayflags [Function]
Set up the proof process for retracting until point.
This calculates the commands to undo to the current point within the locked region. If
invoked outside the locked region, undo the last successfully processed command. See ‘proof-
retract-target’.

After retraction has succeeded in the prover, the filter will call ‘proof-done-retracting’. If
undo-action is non-nil, it will then be invoked on the region in the proof script corresponding
to the proof command sequence. displayflags control output shown to user, see ‘proof-
action-list’.

Before the retraction is calculated, we enforce the file-level protocol with ‘proof-activate-
scripting’. This has a couple of effects:

1. If the file is completely processed, we have to re-open it for scripting again which may
involve retracting other (dependent) files.

2. We may query the user whether to save some buffers.

Step 2 may seem odd — we’re undoing (in) the buffer, after all — but what may happen is
that when scripting starts going forward again, we hit a command that loads other files, but
the user hasn’t saved the latest edits. Therefore it is right to query saves here.

To clean up when scripting is stopped, a script buffer is killed, a file is retract (and thus must
be unlocked), or the proof assistant exits, we use the functions proof-restart-buffers and
proof-script-remove-all-spans—-and-deactivate.

proof-restart-buffers buffers [Function]
Remove all extents in buffers and maybe reset ‘proof-script-buffer’.
The high-level effect is that all members of buffers are completely unlocked, including all the
necessary cleanup. No effect on a buffer which is nil or killed. If one of the buffers is the
current scripting buffer, then ‘proof-script-buffer’ will deactivated.

proof-script-remove-all-spans-and-deactivate [Function]
Remove all spans from scripting buffers via ‘proof-restart-buffers’.

14.6 Proof shell mode

The proof shell mode code is in the file proof-shell.el. Proof shell mode is defined to inherit
from scomint-mode using define-derived-mode near the end of the file. The scomint.el
package stands for “simplified comint”, where comint-mode is the standard Emacs mode for
running an embedded command interpreter. In scomint, many of the interactive commands
have been removed to speed up the process handling, because it isn’t intended that the user
interacts directly with the shell in Proof General.

60 Adapting Proof General

The bulk of the code in the proof-shell package is concerned with sending code to and from
the shell, and processing output for the associated buffers (goals and response).

Good process handling is a tricky issue. Proof General attempts to manage the process strictly,
by maintaining a queue of commands to send to the process. Once a command has been
processed, another one is popped off the queue and sent.

There are several important internal variables which control interaction with the process.

proof-shell-busy [Variable]
A lock indicating that the proof shell is processing.

The lock notes that we are processing a queue of commands being sent to the prover, and
indicates whether the commands correspond to script management from a buffer (rather than
being ad-hoc query commands to the prover).

When processing commands from a buffer for script management, this will be set to the queue
mode 'advancing or 'retracting to indicate the direction of movement.

When this is non-nil, ‘proof-shell-ready-prover’ will give an error if called with a different
requested queue mode.

See also functions ‘proof-activate-scripting’ and ‘proof-shell-available-p’.

proof-marker [Variable]
Marker in proof shell buffer pointing to previous command input.

proof-action-list [Variable]
The main queue of things to do: spans, commands and actions.
The value is a list of lists of the form

(span commands action [DISPLAYFLAGS])
which is the queue of things to do.

span is a region in the sources, where commands come from. Often, additional properties are
recorded as properties of span.

commands is a list of strings, holding the text to be send to the prover. It might be the empty
list if nothing needs to be sent to the prover, such as, for comments. Usually commands
contains just 1 string, but it might also contains more elements. The text should be obtained
with ‘(mapconcat ’identity commands " ")’, where the last argument is a space.

action is the callback to be invoked when this item has been processed by the prover.
For normal scripting items it is ‘proof-done-advancing’, for retract items ‘proof-done-
retracting’, but there are more possibilities (e.g. ‘proof-done-invisible’, ‘proof-shell-
set-silent’, ‘proof-shell-clear-silent’ and ‘proof-tree-show-goal-callback’).

The displayflags are set for non-scripting commands or for when scripting should not bother
the user. They may include

'"invisible non-script command (‘proof-shell-invisible-command’)
'no-response-display do not display messages in response buffer
'no-error-display do not display errors/take error action
'no-goals-display do not goals in goals buffer

'proof-tree-show-subgoal item inserted by the proof-tree package
'priority-action item added via proof-add-to-priority-queue

Note that 'invisible does not imply any of the others. If flags are non-empty, interactive
cues will be surpressed. (E.g., printing hints).

See the functions ‘proof-start-queue’ and ‘proof-shell-exec-loop’.

Chapter 14: Internals of Proof General 61

In Proof General 4.2 and earlier it was always the case that all items from the queue region
were present in proof-action-list. Because of the new parallel background compilation for
Coq, this is no longer the case. Prover specific code may now store items from the queue region
somewhere else. To notify generic Proof General about this, it must set proof-second-action-
list-active for the time where some queue items are missing from proof-action-list. In this
case Proof General keeps the proof shell lock and the queue span even in case proof-action-
list gets empty. Coq uses this feature to hold back Require commands and the following text
until the asynchronous background compilation finishes.

proof-second-action-list-active [Variable]
Signals that some items are waiting outside of ‘proof-action-list’.
If this is t it means that some items from the queue region are waiting for being processed
in a place different from ‘proof-action-list’. In this case Proof General must behave as if
‘proof-action-list’ would be non-empty, when it is, in fact, empty.
This is used, for instance, for parallel background compilation for Coq: The Require command
and the following items are not put into ‘proof-action-1list’ and are stored somewhere else
until the background compilation finishes. Then those items are put into ‘proof-action-
list’ for getting processed.

pg-subterm-anns-use-stack [Variable]
Choice of syntax tree encoding for terms.

If nil, prover is expected to make no optimisations. If non-nil, the pretty printer of the prover
only reports local changes. For Coq 6.2, use t.

The function proof-shell-start is used to initialise a shell buffer and the associated buffers.

proof-shell-start [Command|
Initialise a shell-like buffer for a proof assistant.
Does nothing if proof assistant is already running.

Also generates goal and response buffers.

If ‘proof-prog-name-ask’ is set, query the user for the process command.

The function proof-shell-kill-function performs the converse function of shutting things
down; it is used as a hook function for kill-buffer-hook. Then no harm occurs if the user
kills the shell directly, or if it is done more cautiously via proof-shell-exit. The function
proof-shell-restart allows a less drastic way of restarting scripting, other than killing and
restarting the process.

proof-shell-kill-function [Function]
Function run when a proof-shell buffer is killed.
Try to shut down the proof process nicely and clear locked regions and state variables. Value
for ‘kill-buffer-hook’ in shell buffer, called by ‘proof-shell-bail-out’ if process exits.

proof-shell-exit &optional dont-ask [Command]|
Query the user and exit the proof process.

This simply kills the ‘proof-shell-buffer’ relying on the hook function
‘proof-shell-kill-function’ to do the hard work. If optional argument dont-ask is non-
nil, the proof process is terminated without confirmation.

The kill function uses ‘<PA>-quit-timeout’ as a timeout to wait after sending ‘proof-shell-
quit-cmd’ before rudely killing the process.

This function should not be called if ‘proof-shell-exit-in-progress’ is t, because a re-
cursive call of ‘proof-shell-kill-function’ will give strange errors.

62 Adapting Proof General

proof-shell-bail-out process event [Function]
Value for the process sentinel for the proof assistant process.
If the proof assistant dies, run ‘proof-shell-kill-function’ to cleanup and remove the
associated buffers. The shell buffer is left around so the user may discover what killed the
process. event is the string describing the change.

proof-shell-restart [Command]|
Clear script buffers and send ‘proof-shell-restart-cmd’.
All locked regions are cleared and the active scripting buffer deactivated.

If the proof shell is busy, an interrupt is sent with ‘proof-interrupt-process’ and we wait
until the process is ready.

The restart command should re-synchronize Proof General with the proof assistant, without
actually exiting and restarting the proof assistant process.

It is up to the proof assistant how much context is cleared: for example, theories already
loaded may be "cached" in some way, so that loading them the next time round only performs
a re-linking operation, not full re-processing. (One way of caching is via object files, used by
Coq).

14.6.1 Input to the shell

Input to the proof shell via the queue region is managed by the functions proof-extend-queue
and proof-shell-exec-1loop.

proof-extend-queue end queueitems [Function]
Extend the current queue with queueitems, queue end end.
To make sense, the commands should correspond to processing actions for processing a region
from (buffer-queue-or-locked-end) to end. The queue mode is set to 'advancing

proof-extend-queue end queueitems [Function]
Extend the current queue with queueitems, queue end end.
To make sense, the commands should correspond to processing actions for processing a region
from (buffer-queue-or-locked-end) to end. The queue mode is set to 'advancing

proof-shell-exec-loop [Function]
Main loop processing the ‘proof-action-list’, called from shell filter.

‘proof-action-list’ contains a list of (span command action [FLAGS]) lists.

If this function is called with a non-empty ‘proof-action-1list’, the head of the list is the
previously executed command which succeeded. We execute the callback (action span) on the
first item, then (action span) on any following items which have null as their cmd components.

If a there is a next command after that, send it to the process.
If the action list becomes empty, unlock the process and remove the queue region.

The return value is non-nil if the action list is now empty or contains only invisible elements
for Prooftree synchronization.

Input is actually inserted into the shell buffer and sent to the process by the low-level function
proof-shell-insert.

proof-shell-insert strings action &optional scriptspan [Function]
Insert strings at the end of the proof shell, call ‘scomint-send-input’.

strings is a list of strings (which will be concatenated), or a single string.

The action argument is a symbol which is typically the name of a callback for when each
string has been processed.

Chapter 14: Internals of Proof General 63

This calls ‘proof-shell-insert-hook’. The arguments action and scriptspan may be exam-
ined by the hook to determine how to modify the string variable (exploiting dynamic scoping)
which will be the command actually sent to the shell.

Note that the hook is not called for the empty (null) string or a carriage return.

We strip the string of carriage returns before inserting it and updating ‘proof-marker’ to
point to the end of the newly inserted text.

Do not use this function directly, or output will be lost. It is only used in ‘proof-add-to-
queue’ when we start processing a queue, and in ‘proof-shell-exec-1loop’, to process the
next item.

When Proof General is processing a queue of commands, the lock is managed using a couple of
utility functions. You should not need to use these directly.

proof-grab-lock &optional queuemode [Function]
Grab the proof shell lock, starting the proof assistant if need be.
Runs ‘proof-state-change-hook’ to notify state change. If queuemode is supplied, set the
lock to that value.

proof-release-lock [Function]
Release the proof shell lock. Clear ‘proof-shell-busy’.

14.6.2 Output from the shell

Two main functions deal with output, proof-shell-classify-output and proof-shell-
process-urgent-message. In effect we consider the output to be two streams intermingled:
the "urgent" messages which have "eager" annotations, as well as the ordinary ruminations
from the prover.

The idea is to conceal as much irrelevant information from the user as possible; only the remain-
ing output between prompts and after the last urgent message will be a candidate for the goal
or response buffer. The internal variable proof-shell-urgent-message-marker tracks the last
urgent message seen.

When output is grabbed from the prover process, the first action is to strip spurious carriage
return characters from the end of lines, if proof-shell-strip-crs-from-output requires it.
Then the output is stored into proof-shell-last-output, and its type is stored in proof-
shell-last-output-kind. Output which is deferred or possibly discarded until the queue is
empty is copied into proof-shell-delayed-output, with type proof-shell-delayed-output-
kind. A record of the last prompt seen from the prover process is also kept, in proof-shell-
last-prompt.

proof-shell-strip-crs-from-output [Variable]
If non-nil, remove carriage returns ("M) at the end of lines from output.
This is enabled for cygwin32 systems by default. You should turn it off if you don’t need it
(slight speed penalty).

proof-shell-last-prompt [Variable]
A raw record of the last prompt seen from the proof system.
This is the string matched by ‘proof-shell-annotated-prompt-regexp’.

proof-shell-last-output [Variable]
A record of the last string seen from the proof system.
This is raw string, for internal use only.

64 Adapting Proof General

proof-shell-last-output-kind [Variable]
A symbol denoting the type of the last output string from the proof system.
Specifically:

"interrupt An interrupt message

'error An error message

'loopback A command sent from the PA to be inserted into the script
'response A response message

'goals A goals (proof state) display

'systemspecific Something specific to a particular system,
-- see ‘proof-shell-handle-output-system-specific’
The output corresponding to this will be in ‘proof-shell-last-output’.
See also ‘proof-shell-proof-completed’ for further information about the proof process
output, when ends of proofs are spotted.

This variable can be used for instance specific functions which want to examine ‘proof-
shell-last-output’.

proof-shell-last-output-kind [Variable]
A symbol denoting the type of the last output string from the proof system.
Specifically:

'"interrupt An interrupt message

'error An error message

'loopback A command sent from the PA to be inserted into the script
'response A response message

'goals A goals (proof state) display

'systemspecific Something specific to a particular system,
-- see ‘proof-shell-handle-output-system-specific’
The output corresponding to this will be in ‘proof-shell-last-output’.

See also ‘proof-shell-proof-completed’ for further information about the proof process
output, when ends of proofs are spotted.

This variable can be used for instance specific functions which want to examine ‘proof-
shell-last-output’.

proof-shell-delayed-output-start [Variable]
A record of the start of the previous output in the shell buffer.
The previous output is held back for processing at end of queue.

proof-shell-delayed-output-end [Variable]
A record of the start of the previous output in the shell buffer.
The previous output is held back for processing at end of queue.

proof-shell-delayed-output-flags [Variable]
A copy of the ‘proof-action-list’ flags for ‘proof-shell-delayed-output’.

proof-shell-handle-immediate-output cmd start end flags [Function]
See if the output between start and end must be dealt with immediately.
To speed up processing, PG tries to avoid displaying output that the user will not have
a chance to see. Some output must be handled immediately, however: these are errors,
interrupts, goals and loopbacks (proof step hints/proof by pointing results).

In this function we check, in turn:
‘proof-shell-interrupt-regexp’
‘proof-shell-error-regexp’

Chapter 14: Internals of Proof General 65

‘proof-shell-proof-completed-regexp’
‘proof-shell-result-start’

Other kinds of output are essentially display only, so only dealt with if necessary.

To extend this, set ‘proof-shell-handle-output-system-specific’, which is a hook to
take particular additional actions.

This function sets variables: ‘proof-shell-last-output-kind’, and the counter ‘proof-
shell-proof-completed’ which counts commands after a completed proof.

proof-shell-handle-delayed-output [Function]
Display delayed goals/responses, when queue is stopped or completed.
This function handles the cases of ‘proof-shell-output-kind’ which are not dealt with
eagerly during script processing, namely 'response and 'goals types.

This is useful even with empty delayed output as it will empty the buffers.

The delayed output is in the region [proof-shell-delayed-output-start,proof-shell-
delayed-output-end].

If no goals classified output is found, the whole output is displayed in the response buffer.
If goals output is found, the last matching instance, possibly bounded by ‘proof-shell-end-
goals-regexp’, will be displayed in the goals buffer (and may be further analysed by Proof
General).

Any output that appears before the last goals output (but after messages classified as urgent,
see ‘proof-shell-filter’) will also be displayed in the response buffer.
For example, if output has this form:

messsage-1

goals-1

message-2

goals-2

junk
then goals-2 will be displayed in the goals buffer, and message-2 in the response buffer. junk
will be ignored.
Notice that the above alternation (and separation of junk) can only be distinguished if both
‘proof-shell-start-goals-regexp’ and ‘proof-shell-end-goals-regexp’ are set. With
just the start goals regexp set, goals-2 junk will appear in the goals buffer and no response
output would occur.

The goals and response outputs are copied into ‘proof-shell-last-goals-output’ and
‘proof-shell-last-response-output’ respectively.

The value returned is the value for ‘proof-shell-last-output-kind’, i.e., 'goals or
'response.

proof-shell-urgent-message-marker [Variable]
Marker in proof shell buffer pointing to end of last urgent message.

proof-shell-process-urgent-message start end [Function]
Analyse urgent message between start and end for various cases.
Cases are: trace output, included /retracted files, cleared goals/response buffer, variable set-
ting, xml-encoded pgip response, theorem dependency message or interactive output indica-
tor.

If none of these apply, display the text between start and end.

The text between start and end should be a string that starts with text matching
‘proof-shell-eager-annotation-start’ and ends with text matching ‘proof-shell-
eager—annotation-end’.

66 Adapting Proof General

The main processing point which triggers other actions is proof-shell-filter. It is called
from proof-shell-filter-wrapper, which itself is called from an ordinary Emacs process filter
inside the simplified comint library that is distributed with Proof General (in 1ib/scomint.el).

proof-shell-filter [Function]
Master filter for the proof assistant shell-process.
A function for ‘scomint-output-filter-functions’.

Deal with output and issue new input from the queue. This is an important internal function.
The output must be collected from ‘proof-shell-buffer’ for the following reason. This
function might block inside ‘process-send-string’ when sending input to the proof assistant
or to prooftree. In this case Emacs might call the process filter again while the previous
instance is still running. ‘proof-shell-filter-wrapper’ detects and delays such calls but
does not buffer the output.

Handle urgent messages first. As many as possible are processed, using the function ‘proof-
shell-process-urgent-messages’.

If a prompt is seen, run ‘proof-shell-filter-manage-output’ on the output between the
new prompt and the last input (position of ‘proof-marker’) or the last urgent message
(position of ‘proof-shell-urgent-message-marker’), whichever is later. For example, in
this case:

PROMPT> input
output-1
urgent-message-1
output-2
urgent-message—-2
output-3

PROMPT>

‘proof-marker’ points after input.

‘proof-shell-urgent-message-marker’ points after urgent-message-2, after both urgent
messages have been processed by ‘proof-shell-process-urgent-messages’. Urgent mes-
sages always processed; they are intended to correspond to informational notes that the
prover makes to inform the user or interface on progress.

In this case, the ordinary outputs output-1 and output-2 are ignored; only output-3 will be
processed by ‘proof-shell-filter-manage-output’.

Error or interrupt messages are expected to terminate an interactive output and appear last
before a prompt and will always be processed. Error messages and interrupt messages are
therefore not considered as urgent messages.

The first time that a prompt is seen, ‘proof-marker’ is initialised to the end of the prompt.
This should correspond with initializing the process. After that, ‘proof-marker’ is only
changed when input is sent in ‘proof-shell-insert’.

proof-shell-filter-manage-output start end [Function]
Subroutine of ‘proof-shell-filter’ for output between start and end.

First, we invoke ‘proof-shell-handle-immediate-output’ which classifies and handles out-
put that must be dealt with immediately.

Other output (user display) is only displayed when the proof action list becomes empty, to
avoid a confusing rapidly changing output that slows down processing.

After processing the current output, the last step undertaken by the filter is to send the next
command from the queue.

Chapter 14: Internals of Proof General 67

proof-shell-filter-wrapper str-do-not-use [Function]
Wrapper for ‘proof-shell-filter’, protecting against parallel calls.
In Emacs a process filter function can be called while the same filter is currently running for
the same process, for instance, when the filter blocks on 1/O. This wrapper protects the main
entry point, ‘proof-shell-filter’ against such parallel, overlapping calls.

The argument str-do-not-use contains the most recent output, but is discarded. ‘proof-
shell-filter’ collects the output from ‘proof-shell-buffer’ (where it is inserted by
‘scomint-output-filter’), relieving this function from the task to buffer the output that
arrives during parallel, overlapping calls.

14.7 Debugging

To debug Proof General, it may be helpful to set the configuration variable proof-general-
debug.

proof-general-debug [User Option)]
Non-nil to run Proof General in debug mode.
This changes some behaviour (e.g. markup stripping) and displays debugging messages in the
response buffer. To avoid erasing messages shortly after they’re printed, set ‘proof-tidy-
response’ to nil. This is only useful for PG developers.

The default value is nil.

For more information about debugging Emacs lisp, consult the Emacs Lisp Reference Manual.
I recommend using the source-level debugger edebug.

69

Appendix A Plans and Ideas

This appendix contains some tentative plans and ideas for improving Proof General.

This appendix is no longer extended: instead we keep a list of Proof General projects on the
web, and forthcoming plans and ideas in the TODO and todo files included in the ordinary and
developers PG distributions, respectively. Once the items mentioned below are implemented,
they will be removed from here.

Please send us contributions to our wish lists, or better still, an offer to implement something
from them!

A.1 Proof by pointing and similar features

This is a note by David Aspinall about proof by pointing and similar features.

Proof General already supports proof by pointing, and experimental support was provided in
LEGO. We would like to extend this support to other proof assistants. Unfortunately, proof by
pointing requires rather heavy support from the proof assistant. There are two aspects to the
support:

e term structure mark-up

e proof by pointing command generation

Term structure mark-up is useful in itself: it allows the user to explore the structure of a term
using the mouse (the smallest subexpression that the mouse is over is highlighted), and easily
copy subterms from the output to a proof script.

Command generation for proof by pointing is usually specific to a particular logic in use, if we
hope to generate a good proof command unambiguously for any particular click. However, Proof
General could easily be generalised to offer the user a context-sensitive choice of next commands
to apply, which may be more useful in practice, and a worthy addition to Proof General.

Implementors of new proof assistants should be encouraged to consider supporting term-
structure mark up from the start. Command generation should be something that the logic-
implementor can specify in some way.

Of the supported provers, we can certainly hope for proof-by-pointing support from Coq, since
the CtCoq proof-by-pointing code has been moved into the Coq kernel lately. I hope the Coq
community can encourage somebody to do this.

A.2 Granularity of atomic command sequences

This is a proposal by Thomas Kleymann for generalising the way Proof General handles se-
quences of proof commands (see Goal-save sequences in the user manual), particularly to make
retraction more flexible.

The blue region of a script buffer contains the initial segment of the proof script which has
been processed successfully. It consists of atomic sequences of commands (ACS). Retraction
is supported to the beginning of every ACS. By default, every command is an ACS. But the
granularity of atomicity should be able to be adjusted.

This is essential when arbitrary retraction is not supported. Usually, after a theorem has been
proved, one may only retract to the start of the goal. One needs to mark the proof of the
theorem as an ACS. At present, support for goal-save sequences (see Goal-save sequences in the
user manual), has been hard wired. No other ACS are currently supported. We propose the
following to overcome this deficiency:

proof-atomic-sequents-list
is a list of instructions for setting up ACSs. Each instruction is a list of the form
(end start &optional forget-command). end is a regular expression to recognise

70 Adapting Proof General

the last command in an ACS. start is a function. Its input is the last command
of an ACS. Its output is a regular expression to recognise the first command of
the ACS. It is evaluated once and, starting with the command matched by end, the
output is successively matched against previously processed commands until a match
occurs (or the beginning of the current buffer is reached). The region determined by
(start,end) is locked as an ACS. Optionally, the ACS is annotated with the actual
command to retract the ACS. This is computed by applying forget-command to the
first and last command of the ACS.

For convenience one might also want to allow start to be the symbol ‘t’ as a conve-
nient short-hand for '(lambda (str) ".") which always matches.

A.3 Browser mode for script files and theories

This is a proposal by David Aspinall for a browser window.

A browser window should provide support for browsing script files and theories. We should
be able to inspect data in varying levels of detail, perhaps using outlining mechanisms. For
theories, it would be nice to query the running proof assistant. This may require support from
the assistant in the form of output which has been specially marked-up with an SGML like
syntax, for example.

A browser would be useful to:
e Provide impoverished proof assistants with a browser
e Extend the uniform interface of Proof General to theory browsing
e Interact closely with proof script writing

The last point is the most important. We should be able to integrate a search mechanism for
proofs of similar theorems, theorems containing particular constants, etc.

Appendix B Demonstration Instantiations

This appendix contains the code for the two demonstration instantiations of Proof General, for

Isabelle.

These instantiations make an almost-bare minimum of settings to get things working. To add
embellishments, you should refer to the instantiations for other systems distributed with Proof

General.

B.1 demoisa-easy.el

;; demoisa-easy.el Example Proof General instance for Isabelle

3

J

;3 Copyright (C) 1999 LFCS Edinburgh.

3
3
b
3
)
I
I
I
3
3
3
I

b

3

3

;5 Ids

3

;5 etc.

b

;3 See demoisa.el and the Proof General

I

;; To test this file you must rename it

b

(require 'proof-easy-config)

(proof-easy-config

'demoisa "Isabelle Demo"
proof-prog-name "isabelle"
proof-terminal-string
proof-script-comment-start
proof-script-comment-end
proof-goal-command-regexp
proof-save-command-regexp
proof-goal-with-hole-regexp
proof-save-with-hole-regexp
proof-non-undoables-regexp
proof-goal-command
proof-save-command
proof-kill-goal-command
proof-showproof-command
proof-undo-n-times-cmd
proof-auto-multiple-files
proof-shell-cd-cmd
proof-shell-interrupt-regexp

proof-shell-start-goals-regexp

proof-shell-end-goals-regexp
proof-shell-quit-cmd
proof-assistant-home-page

;5 Author: David Aspinall <David.Aspinall@ed.ac.uk>

;; This is an alternative version of demoisa.el which uses the
;3 proof-easy-config macro to do the work of declaring derived modes,

demoisa.el.

; easy configure mechanism

n(*u
Il*) n
"“Goal"
II*qedll
"ged_goal \"\\(\\(C.*\\)\\D\""
"ged \"\WON AN\
"undo\\ | back"
I|Goal \ll%s\ll ; n
"qed \"%s\";"
"Goal \"PROP no_goal_set\";"
npr()]
"pg_repeat undo %s;"
t
"ed \"%s\""
"Interrupt"
"Level [0-9]"
"val it"
"quit () ;"

manual for more documentation.

72

B.2

Adapting Proof General

"http://www.cl.cam.ac.uk/Research/HVG/Isabelle/"
proof-shell-annotated-prompt-regexp

"\\(val it = O : unit\n\\)7ML>? "

proof-shell-error-regexp

"***\\ | . *Error:\\| "uncaught exception \\| Exception- "
proof-shell-init-cmd

"fun pg_repeat £ 0 = () | pg_repeat f n = (£(); pg_repeat £ (n-1));"
proof-shell-proof-completed-regexp ""No subgoals!"
proof-shell-eager-annotation-start

"“\\ [opening \\| “###\\| "Reading")

(provide 'demoisa)

demoisa.el

;; demoisa.el Example Proof General instance for Isabelle
;3 Copyright (C) 1999 LFCS Edinburgh.

A

;3 Author: David Aspinall <David.Aspinall@ed.ac.uk>
;5 Id

A

;; See README in this directory for an introduction.

;; Basic configuration is controlled by one line in “proof-site.el'.
;3 It has this line in proof-assistant-table:

53 (demoisa "Isabelle Demo" "\\.ML$")

;; From this it loads this file "demoisa/demoisa.el" whenever

;; a ML file is visited, and sets the mode to “demoisa-mode'

;; (defined below).

;3 I've called this instance "Isabelle Demo Proof General" just to

;; avoid confusion with the real "Isabelle Proof General" in case the
;; demo gets loaded by accident.

;5 To make the line above take precedence over the real Isabelle mode
;; later in the table, set PROOFGENERAL_ASSISTANTS=demoisa in the

;; shell before starting Emacs (or customize proof-assistants).

)

(require 'proof) ; load generic parts

;; Defining variables using customize is pretty easy.

Appendix B: Demonstration Instantiations 73

;5 You should do it at least for your prover-specific user options.

;3 proof-site provides us with two customization groups

;; automatically: (based on the name of the assistant)

;; 'isabelledemo - User options for Isabelle Demo Proof General
;; 'ilsabelledemo-config - Configuration of Isabelle Proof General

¥ (constants, but may be nice to tweak)

;3 The first group appears in the menu

N ProofGeneral -> Advanced -> Customize -> Isabelledemo

;; The second group appears in the menu:

R ProofGeneral -> Internals -> Isabelledemo config

P

(defcustom isabelledemo-prog-name "isabelle"
"xName of program to run Isabelle."
:type 'file
:group 'isabelledemo)

(defcustom isabelledemo-web-page
"http://www.cl.cam.ac.uk/Research/HVG/isabelle.html"
"URL of web page for Isabelle."

:type 'string
:group 'isabelledemo-config)

(defun demoisa-config ()
"Configure Proof General scripting for Isabelle."
(setq
proof-terminal-string ";"
proof-script-comment-start " ("
proof-script-comment-end "*)"
proof-goal-command-regexp "“Goal"
proof-save-command-regexp ""qed"
proof-goal-with-hole-regexp "qged_goal \"\\(\\(.*x\\)\\)\""
proof-save-with-hole-regexp "ged \"\\(\\C.*x\\D\\)\""
proof-non-undoables-regexp "undo\\|back"
proof-undo-n-times-cmd "pg_repeat undo %s;"
proof-showproof-command "pr()"
proof-goal-command "Goal \"%s\";"
proof-save-command "ged \"%s\";"
proof-kill-goal-command "Goal \"PROP no_goal_set\";"
proof-assistant-home-page isabelledemo-web-page
proof-auto-multiple-files t))

(defun demoisa-shell-config ()

Adapting Proof General

"Configure Proof General shell for Isabelle."

(setq

proof-shell-annotated-prompt-regexp "“\\(val it = (O : unit\n\\)7ML>? "
proof-shell-cd-cmd "cd \"%s\""

proof-shell-interrupt-regexp "Interrupt"

proof-shell-error-regexp "**\\#\\|~.*Error:\\| uncaught exception \\| Exception:
proof-shell-start-goals-regexp "Level [0-9]"
proof-shell-end-goals-regexp "val it"
proof-shell-proof-completed-regexp ""No subgoals!"
proof-shell-eager-annotation-start "“\\[opening \\| ###\\| "Reading"
proof-shell-init-cmd ; define a utility function, in a lib somewhere?
"fun pg_repeat £ 0 = ()

| pg_repeat f n = (£(); pg_repeat f (n-1));"
proof-shell-quit-cmd "quit();"))

;; The name of the script mode is always <proofsym>-script,
;; but the others can be whatever you like.

;; The derived modes set the variables, then call the
;3 <mode>-config-done function to complete configuration.

(define-derived-mode demoisa-mode proof-mode
"Isabelle Demo script" nil
(demoisa-config)

(proof-config-done))

(define-derived-mode demoisa-shell-mode proof-shell-mode
"Isabelle Demo shell" nil
(demoisa-shell-config)
(proof-shell-config-done))

(define-derived-mode demoisa-response-mode proof-response-mode
"Isabelle Demo response" nil
(proof-response-config-done))

(define-derived-mode demoisa-goals-mode proof-goals-mode
"Isabelle Demo goals" nil
(proof-goals-config-done))

;; The response buffer and goals buffer modes defined above are
;3 trivial. In fact, we don't need to define them at all -- they
;3 would simply default to "proof-response-mode" and "pg-goals-mode".

;3 A more sophisticated instantiation might set font-lock-keywords to
;; add highlighting, or some of the proof by pointing markup
;; configuration for the goals buffer.

Appendix B: Demonstration Instantiations

(provide 'demoisa)

75

77

Function and Command Index

D

defpgcustom...... ..o 54
defpgdefault................ ... 49, 54

P

proof-activate-scripting...................... 57
proof-add-completions.......................... 18
Proof-ass...... ... 54
Proof-assS=SYm........ooiiiiiiiiiiiiiii 55
proof-ass—-symv..................iiiiiiiiiiia 55
proof-assert-until-point 59
proof-complete-buffer-atomic.................. 57
proof-deactivate-scripting.................... 58
proof-define-assistant-command 51
proof-define-assistant-command-witharg...... 51
proof-definvisible............................. 50
proof-defshortcut 50
proof-deftoggle............. 55
proof-extend-queueL 62
proof-format-filename.......................... 51
proof-generic-count-undos 13
proof-generic-find-and-forget................. 13
proof-generic-state-preserving-p............. 17
proof-grab-lock................ ... 63
proof-init-segmentation 57
proof-insert...........l 50

proof-looking-at-syntactic-context........... 10

proof-register-possibly-new-processed-file.. 57

proof-release-lock............................. 63
proof-restart-buffers.......................... 59
proof-retract-until-point..................... 59
proof-script-generic-parse-cmdend............ 58
proof-script-generic-parse-cmdstart.......... 58
proof-script-generic-parse-sexp.............. 58
proof-script-remove-all-spans-and-
deactivate............ooiiiiiiiiiiiiii 59
proof-semis-to-vanillas 58
proof-set-value................. 55
proof-shell-bail-out.................oooiiin. 62
proof-shell-exec-loop.......................... 62
proof-shell-exit.......... ..o, 61
proof-shell-filter............................. 66
proof-shell-filter-manage-output............. 66
proof-shell-filter-wrapper.................... 67
proof-shell-handle-delayed-output............ 65
proof-shell-handle-immediate-output.......... 64
proof-shell-insert 62
proof-shell-invisible-command................. 50
proof-shell-kill-function..................... 61
proof-shell-process-urgent-message........... 65
proof-shell-restart............................ 62
proof-shell-startccoiiiiiiiinnnnnn. 61
proof-tree-check-proof-finish................. 46
proof-tree-external-display-toggle........... 45
proof-tree-handle-delayed-output............. 46
proof-zap-commas................ ... 39

79

Variable and User Option Index

C

comment-quote-nested........................... 37

I

imenu-generic-expression 12

O

outline-heading-end-regexp.................... 37
outline-regexp............oooiiiiiiiii.L. 37

P

PA-completion-table............................ 18
PA-help-menu-entries............................ 7
PA-menu-entries...............l 7
PA-prog-argsiiiiiiii i 19
PA-pProg—envc.c.uiiiiiiiiiiiiiiiiiii 19
PA-toolbar-entries 8
pbp-goal-command........... ..o 29
pbp-hyp-command................. 29
pg-after-fontify-output-hook.................. 39
pg-before-fontify-output-hook................. 39
pg-goals—change-goalccouuuuuinnnnnnn. 29
P8-80alS—erTOr-TegeXP....uvveeennrneeennnnnn .. 29
pg-subterm-anns-use-stack..................... 61
pg-subterm-end-char................ 29
pg-subterm-first-special-char................. 22
pg-subterm-sep-char............................ 29
pg-subterm-start-char.......................... 29
pg-topterm-goalhyplit-fn...................... 13
PS-tOpterm-regexp ... 29
proof-action-list....................... 60, 62, 64
proof-activate-scripting-hook................. 17
proof-assistant-home-page 7
proof-assistant-table................ 3
proof-assistants................l 53
proof-atomic-sequents-list.................... 69
proof-auto-multiple-files..................... 17
proof-buffer-typel 56
proof-cannot-reopen-processed-files...... 26, 35
proof-case-fold-search......................... 10
proof-completed-proof-behaviour 11
proof-context-command........................... 7
proof-count-undos-fn............... 13
proof-electric-terminator-noterminator 9
proof-find-and-forget-fn...................... 13
proof-find-theorems-command.................... 7
proof-forget-id-command 13
proof-general-debug..................... 67
proof-general-home-page 33
proof-general-name............................. 33
proof-general-version.......................... 54
proof-get-proof-info-fn 16
proof-goal-command 7
proof-goal-command-p............c.coiiiiiinnan. 11
proof-goal-command-regexp..................... 10
proof-goal-with-hole-regexp............... 11, 12

proof-goal-with-hole-result............... 11, 12

proof-goals-buffer.......................... ... 56
proof-goals-font-lock-keywords 39
proof-home-directory.............. 53
proof-ignore-for-undo-count................... 13
proof-images-directory.................. 53
proof-included-files-list 25, 26, 35, 56
proof-info-command L 7
proof-info-directory.............. 53
proof-kill-goal-command 14
proof-locked-spanccoiiiiiiiiiiiiiii, 56
proof-marker ...l 60
proof-nested-goals-history-p.................. 14
proof-nested-undo-regexp 14
proof-no-fully-processed-buffer.............. 18
proof-non-undoables-regexp.................... 12
proof-omit-cheating-regexp.................... 17
proof-omit-proofs-configured.................. 15
proof-prog-name..............l 19
proof-queue-span........... ..ol 56
proof-really-save-command-p................... 11
proof-response-buffer................ 55
proof-response-font-lock-keywords............ 39
proof-retract-command-fn................... ... 16
proof-save-command 7
proof-save-command-regexp..................... 11
proof-save-with-hole-regexp................... 11
proof-script-buffer....................... ... 55
proof-script-cmd-force-next-proof-kept...... 16
proof-script-cmd-prevents-proof-omission.... 16
proof-script-command-end-regexp 9
proof-script-command-start-regexp............. 9
proof-script-comment-end 10
proof-script-comment-end-regexp.............. 10
proof-script-comment-start.................... 10
proof-script-comment-start-regexp............ 10
proof-script-definition-end-regexp........... 15
proof-script-font-lock-keywords 39
proof-script-imenu-generic-expression....... 12
proof-script-proof-admit-command............. 15
proof-script-proof-end-regexp................. 15
proof-script-proof-start-regexp.............. 15
proof-script-sexp-commands 9
proof-script-syntax-table-entries............ 37
proof-second-action-list-active.............. 61
proof-shell-annotated-prompt-regexp.......... 22
proof-shell-assumption-regexp................. 23
proof-shell-auto-terminate-commands.......... 19
proof-shell-buffer............................. 55
proof-shell-busy........................oo... 60
proof-shell-cd-cmdcoiiiiniinnnnnnn. 20
proof-shell-clear-goals-regexp 24
proof-shell-clear-response-regexp............ 24
proof-shell-compute-new-files-list....... 26, 35
proof-shell-delayed-output-end 64
proof-shell-delayed-output-flags............. 64
proof-shell-delayed-output-start............. 64
proof-shell-eager-annotation-end.......... 24, 36
proof-shell-eager-annotation-start....... 24, 36
proof-shell-eager-annotation-start-length... 24
proof-shell-end-goals-regexp.................. 23
proof-shell-error-or-interrupt-seen.......... 56

80
proof-shell-error-regexpoooeeuuuunnn. 22
proof-shell-filename-escapes.................. 26

proof-shell-handle-error-or-interrupt-hook.. 26
proof-shell-handle-output-system-specific... 27

proof-shell-inform-file-processed-cmd 20
proof-shell-inform-file-retracted-cmd 21
proof-shell-init-cmd........................... 20
proof-shell-insert-hook 21
proof-shell-interactive-prompt-regexp....... 25
proof-shell-interrupt-regexp.................. 22
proof-shell-last-output 63
proof-shell-last-output-kind.................. 64
proof-shell-last-prompt 63
proof-shell-pre-interrupt-hook 26
proof-shell-pre-sync-init-cmd................. 19
proof-shell-process-connection-type.......... 26
proof-shell-process-file................... 25, 35
proof-shell-proof-completed................... 56
proof-shell-proof-completed-regexp........... 23
proof-shell-quit-cmd............. ..., 20
proof-shell-restart-cmd 20
proof-shell-result-end......................... 29
proof-shell-result-start 29

proof-shell-retract-files-regexp.......... 25, 35

Adapting Proof General

proof-shell-silent-threshold.................. 20
proof-shell-start-goals-regexp 23
proof-shell-start-silent-cmd.................. 20
proof-shell-stop-silent-cmd................... 20
proof-shell-strip-crs-from-input............. 21
proof-shell-strip-crs-from-output............ 63
proof-shell-syntax-table-entries............. 37
proof-shell-theorem-dependency-list-regexp.. 25
proof-shell-trace-output-regexp.............. 25
proof-shell-truncate-before-error............ 23
proof-shell-urgent-message-marker............ 65
proof-showproof-command......................... 7
proof-splash-contents.......................... 31
proof-splash-time 31
proof-state-preserving-p................o.an 17
proof-terminal-string.................., 9
proof-tokens-activate-command................. 41
proof-tokens-deactivate-command 41
proof-tokens-extra-modes 41
proof-toolbar-entries-default.................. 8
proof-tree-configured................ 45
proof-tree-external-display................... 45
proof-undo-n-times-cmd................... 12
proof-universal-keys..................... 33

Concept Index

A

ACS (Atomic Command Sequence) 69

C

comint-mode 59
configuration i 54
CONVENTIONS . o\ttt it ittt et i iienns 54

D

debugging 67

E

eXteNtS . . 53

F

M

mode stub....... 53
Multiple files....... ... i 35

81

O

overlays ... 53

P

proof by pointing........... oL 69
Proof General Kit L. 1
proof shell mode.......... 59

S

scomint-mode i 59
settings ... 54
site configuration.......... ool 53
SPAIS .« ettt et e 53
syntax table....... i 37

Unicode Tokens 41
user OptionsS........oovviiiiiiiii 54

vV

variables 55

Table of Contents

Introduction...... 1
FUbUTE . . . e 1
Credits - oo e e 1

1 Beginning with a New Prover 3
1.1 Overview of adding & NEW PrOVETottt e 3
1.2 Demonstration instance and easy configuration................., 4
1.3 Major modes used by Proof General 5

2 Menus, toolbar, and user-level commands.................... 7
2.1 Settings for generic user-level commands ... 7
2.2 Menu configurationoouu i e 7
2.3 Toolbar configuration i 8

3 Proof Script Settings........... L. 9
3.1 Recognizing commands and comments i 9
3.2 Recognizing proofs 10
3.3 Recognizing other elements i 12
3.4 Configuring undo behaviour 12
3.5 Nested Proofs. ... 14
3.6 Omitting proofs for speed. 14
3.7 Proof status statistic e 16
3.8 Safe (state-preserving) commands. 17
3.9 Activate scripting hook 17
3.10 Automatic multiple files 17
3.11 Completely asserted buffers...... i 18
3.12 Completions.o 18

4 Proof Shell Settings................ 19
4.1 COmMIMANAS . . o oottt e et e e e 19
4.2 Script input to the shell. 21
4.3 Settings for matching various output from proof process................... 22
4.4 Settings for matching urgent messages from proof process 23
4.5 Hooks and other settings. e 26

5 Goals Buffer Settings................. 29

6 Splash Screen Settings.......... i, 31

7 Global Constants.......... 33

8 Handling Multiple Files.............. 35

9 Configuring Editing Syntax..................., 37

ii

10 Configuring Font Lock 39
11 Configuring Tokens 41
12 Configuring Proof-Tree Visualization.................... ... 43
12.1 A layered set of proof trees 43
12.2 PrerequUiSitesttt e 43
12.3 Proof-Tree Display Internals...... ... i e 44
12.3.1 Organization of the Code i i 44
12.3.2 CommuniCationttt e 44
12.3.3 GUATAS . . .ottt e 45
12.3.4 Urgent and Delayed Actions 45
12.3.5 Full Annotation e e 46

12.4 Configuring Prooftree for a New Proof Assistant 46
12.4.1 Proof Tree Elisp configurationc.oiiiiiiiii e 46
12.4.2 Prooftree Adaption i 47

13 Writing More Lisp Code. ..., 49
13.1 Default values for generic settings......... ..o 49
13.2 Adding prover-specific configurations. i 49
13.3 Useful variables. 50
13.4 Useful functions and MacroSouutttii e 50
14 Internals of Proof General................................... 53
B T oY T 53
14.2 Proof General site configuration i i 53
14.3 Configuration variable mechanisms........... i i i i 54
14.4 Global variables 55
14.5 Proof script mode 56
14.6 Proof shell mode 59
14.6.1 Input to the shell i 62
14.6.2 Output from the shell. 63

14.7 DebUGEING . . o ottt 67
Appendix A Plansand Ideas................................... 69
A.1 Proof by pointing and similar features......... ... 69
A.2 Granularity of atomic command SEqUENCESuu ittt 69
A.3 Browser mode for script files and theories............... 70
Appendix B Demonstration Instantiations.................... 71
B.1 demoisa-easy.€l. 71
B.2 demoisa.el.o e 72
Function and Command Index................................... 77
Variable and User Option Index................................. 79

Concept Index i 81

	Introduction
	Future
	Credits

	1 Beginning with a New Prover
	Overview of adding a new prover
	Demonstration instance and easy configuration
	Major modes used by Proof General

	2 Menus, toolbar, and user-level commands
	Settings for generic user-level commands
	Menu configuration
	Toolbar configuration

	3 Proof Script Settings
	Recognizing commands and comments
	Recognizing proofs
	Recognizing other elements
	Configuring undo behaviour
	Nested proofs
	Omitting proofs for speed
	Proof status statistic
	Safe (state-preserving) commands
	Activate scripting hook
	Automatic multiple files
	Completely asserted buffers
	Completions

	4 Proof Shell Settings
	Commands
	Script input to the shell
	Settings for matching various output from proof process
	Settings for matching urgent messages from proof process
	Hooks and other settings

	5 Goals Buffer Settings
	6 Splash Screen Settings
	7 Global Constants
	8 Handling Multiple Files
	9 Configuring Editing Syntax
	10 Configuring Font Lock
	11 Configuring Tokens
	12 Configuring Proof-Tree Visualization
	A layered set of proof trees
	Prerequisites
	Proof-Tree Display Internals
	Organization of the Code
	Communication
	Guards
	Urgent and Delayed Actions
	Full Annotation

	Configuring Prooftree for a New Proof Assistant
	Proof Tree Elisp configuration
	Prooftree Adaption

	13 Writing More Lisp Code
	Default values for generic settings
	Adding prover-specific configurations
	Useful variables
	Useful functions and macros

	14 Internals of Proof General
	Spans
	Proof General site configuration
	Configuration variable mechanisms
	Global variables
	Proof script mode
	Proof shell mode
	Input to the shell
	Output from the shell

	Debugging

	A Plans and Ideas
	Proof by pointing and similar features
	Granularity of atomic command sequences
	Browser mode for script files and theories

	B Demonstration Instantiations
	demoisa-easy.el
	demoisa.el

	Function and Command Index
	Variable and User Option Index
	Concept Index

