We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : h=carpetBettiTables(a,b)
-- .00286175s elapsed
-- .00749846s elapsed
-- .0273577s elapsed
-- .0120949s elapsed
-- .00438512s elapsed
0 1 2 3 4 5 6 7 8 9
o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
0: 1 . . . . . . . . .
1: . 36 160 315 288 . . . . .
2: . . . . . 288 315 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
2 => total: 1 36 167 370 476 476 370 167 36 1
0: 1 . . . . . . . . .
1: . 36 160 322 336 140 48 7 . .
2: . . 7 48 140 336 322 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
3 => total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : HashTable
|
i3 : T= carpetBettiTable(h,3)
0 1 2 3 4 5 6 7 8 9
o3 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o3 : BettiTally
|
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o4 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i5 : elapsedTime T'=minimalBetti J
-- .235467s elapsed
0 1 2 3 4 5 6 7 8 9
o5 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o5 : BettiTally
|
i6 : T-T'
0 1 2 3 4 5 6 7 8 9
o6 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o6 : BettiTally
|
i7 : elapsedTime h=carpetBettiTables(6,6);
-- .00535844s elapsed
-- .0214963s elapsed
-- .130323s elapsed
-- 1.13233s elapsed
-- .312915s elapsed
-- .0461872s elapsed
-- .00963385s elapsed
-- 5.20337s elapsed
|
i8 : keys h
o8 = {0, 2, 3, 5}
o8 : List
|
i9 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o9 : BettiTally
|
i10 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o10 : BettiTally
|