
Paradyn Parallel Performance Tools

DataflowAPI
Programmer’s Guide

10.2 Release
July 2020

Computer Sciences Department

University of Wisconsin–Madison

Madison, WI 53706

Computer Science Department

University of Maryland

College Park, MD 20742

Email dyninst-api@cs.wisc.edu
Web https://github.com/dyninst/dyninst

Contents

1 Introduction 2

2 Abstractions 2

3 Examples 3

3.1 Slicing . 3

3.2 Symbolic Evaluation . 4

3.3 Liveness Analysis . 5

3.4 Stack Analysis . 6

4 API Reference 8

4.1 Class Assignment . 8

4.2 Class AssignmentConverter . 9

4.3 Class Absloc . 9

4.4 Class AbsRegion . 11

4.5 Class AbsRegionConverter . 13

4.6 Class Graph . 14

4.7 Class Node . 15

4.8 Class Edge . 16

4.9 Class Slicer . 17

4.10 Class Slicer::Predicates . 19

4.11 Class StackAnalysis . 20

4.12 Class StackAnalysis::Height . 22

4.13 Class AST . 23

4.14 Class SymEval . 25

4.15 Class ASTVisitor . 29

1

1 Introduction

DataFlowAPI aggregates a collection of dataflow analysis algorithms that are useful in Dyninst
development into a single library. These algorithms can also be foundations for users to build
customized analyses. Currently, these algorithms include:

◦ Slicing takes a program location as input and can either slice backward to determine which
instructions affect the results of the given program location, or slice forward to determine which
instructions are affected by the results of the given program location. One key feature of our slicing
implementation is that users can control where and when to stop slicing through a set of call back
functions.

◦ Stack Analysis determines whether or not a register or memory location points to the stack. If
it does point to the stack, Stack Analysis may be able to determine the exact stack location that is
pointed to.

◦ Symbolic Expansion and Evaluation convert instructions to several symbolic expressions. Each
symbolic expression represents the overall effects of these instructions on a register or a memory
location.

◦ Register Liveness determines whether a register is live or not at a program location. A register
is live at a program location if it will be used later in the program before its content is overwritten.

2 Abstractions

DataflowAPI starts from the control flow graphs generated by ParseAPI and the instructions gen-
erated by InstructionAPI. From these, it provides dataflow facts in a variety of forms. The key
abstractions used by DataflowAPI are:

◦ Abstract Location represents a register or memory location in the program. DataflowAPI
provides three types of abstract locations: register, stack, and heap. A register abstract location
represents a register, and the same register at two different program locations is treated as the same
abstract location. A stack abstract location consists of the stack frame to which it belongs and the
offset within the stack frame. A heap abstract location consists of the virtual address of the heap
variable.

◦ Abstract Region represents a set of abstract locations of the same type. If an abstract region
contains only a single abstract location, the abstract location is precisely represented. If an abstract
region contains more than one abstract location, the region contains the type of the locations. In
the cases where it represents memory (either heap or stack), an abstract region also contains the
memory address calculation that gives rise to this region.

◦ Abstract Syntax Tree (AST) represents a symbolic expression of an instruction’s semantics.
Specifically, an AST specifies how the value of an abstract location is modified by the instruction.

2

◦ Assignment represents a single data dependency of abstract regions in an instruction. For example,
xchg eax, ebx creates two assignments: one from pre-instruction eax to post-instruction ebx, and
one from pre-instruction ebx to post-instruction eax.

◦ Stack Height represents the difference between a value in an abstract location and the stack
pointer at a function’s call site.

3 Examples

We show several examples of how to use DataflowAPI. In these examples, we assume that the
mutatee has been parsed and we have function and block objects to analyze. Users may refer to
the ParseAPI manual for how to obtain these function and block objects.

3.1 Slicing

The following example uses DataflowAPI to perform a backward slice on an indirect jump instruc-
tion to determine the instructions that affect the calculation of the jump target. The goal of this
example is to show (1) how to convert an instruction to assignments; (2) how to perform slicing
on a given assignment; (3) how to extend the default Slicer::Predicates and write call back
functions to control the behavior of slicing.

1 #include "Instruction.h"
#include "CFG.h"
#include "slicing.h"

using namespace Dyninst;
6 using namespace ParseAPI;
using namespace InstructionAPI;
using namespace DataflowAPI;

// We extend the default predicates to control when to stop slicing
11 class ConstantPred : public Slicer::Predicates {

public:
// We do not want to track through memory writes
virtual bool endAtPoint(Assignment::Ptr ap) {

return ap−>insn().writesMemory();
16 }

// We can treat PC as a constant as its value is the address of the instruction
virtual bool addPredecessor(AbsRegion reg) {

if (reg.absloc().type() == Absloc::Register) {
21 MachRegister r = reg.absloc().reg();

return !r.isPC();
}
return true;

}

3

26 };

// Assume that block b in function f ends with an indirect jump.
void AnalyzeJumpTarget(Function *f, Block *b) {

// Get the last instruction in this block, which should be a jump
31 Instruction insn = b−>getInsn(b−>last());

// Convert the instruction to assignments
// The first parameter means to cache the conversion results.
// The second parameter means whether to use stack analysis to anlyze stack accesses.

36 AssignmentConverter ac(true, false);
vector<Assignment::Ptr> assignments;
ac.convert(insn, b−>last(), f, b, assignments);

// An instruction can corresponds to multiple assignment.
41 // Here we look for the assignment that changes the PC.

Assignment::Ptr pcAssign;
for (auto ait = assignments.begin(); ait != assignments.end(); ++ait) {

const AbsRegion &out = (*ait)−>out();
if (out.absloc().type() == Absloc::Register && out.absloc().reg().isPC()) {

46 pcAssign = *ait;
break;

}
}

51 // Create a Slicer that will start from the given assignment
Slicer s(pcAssign, b, f);

// We use the customized predicates to control slicing
ConstantPred mp;

56 GraphPtr slice = s.backwardSlice(mp);
}

3.2 Symbolic Evaluation

The following example shows how to expand a slice to ASTs and analyze an AST. Suppose we have
a slice representing the instructions that affect the jump target of an indirect jump instruction. We
can get the expression of the jump targets and visit the expression to see if it is a constant.

#include "SymEval.h"
#include "slicing.h"

3 using namespace Dyninst;
using namespace DataflowAPI;

// We extend the default ASTVisitor to check whether the AST is a constant
class ConstVisitor: public ASTVisitor {

8 public:
bool resolved;
Address target;

4

ConstVisitor() : resolved(true), target(0){}

13 // We reach a constant node and record its value
virtual AST::Ptr visit(DataflowAPI::ConstantAST * ast) {

target = ast−>val().val;
return AST::Ptr();

};
18

// If the AST contains a variable
// or an operation, then the control flow target cannot
// be resolved through constant propagation
virtual AST::Ptr visit(DataflowAPI::VariableAST *) {

23 resolved = false;
return AST::Ptr();

};
virtual AST::Ptr visit(DataflowAPI::RoseAST * ast) {

resolved = false;
28

// Recursively visit all children
unsigned totalChildren = ast−>numChildren();
for (unsigned i = 0 ; i < totalChildren; ++i) {

ast−>child(i)−>accept(this);
33 }

return AST::Ptr();
};

};

38 Address ExpandSlice(GraphPtr slice, Assignment::Ptr pcAssign) {
Result_t symRet;
SymEval::expand(slice, symRet);

// We get AST representing the jump target
43 AST::Ptr pcExp = symRet[pcAssign];

// We analyze the AST to see if it can actually be resolved by constant propagation
ConstVisitor cv;
pcExp−>accept(&cv);

48 if (cv.resolved) return cv.target;
return 0;

}

3.3 Liveness Analysis

The following example shows how to query for live registers.

#include "Location.h"
#include "liveness.h"
#include "bitArray.h"
using namespace std;

5

5 using namespace Dyninst;
using namespace Dyninst::ParseAPI;

void LivenessAnalysis(Function *f, Block *b) {
// Construct a liveness analyzer based on the address width of the mutatee.

10 // 32−bit code and 64−bit code have different ABI.
LivenessAnalyzer la(f−>obj()−>cs()−>getAddressWidth());

// Construct a liveness query location
Location loc(f, b);

15

// Query live registers at the block entry
bitArray liveEntry;
if (!la.query(loc, LivenessAnalyzer::Before, liveEntry)) {

printf("Cannot look up live registers at block entry\n");
20 }

printf("There are %d registers live at the block entry\n", liveEntry.count());

// Query live register at the block exit
25 bitArray liveExit;

if (!la.query(loc, LivenessAnalyzer::After, liveExit)) {
printf("Cannot look up live registers at block exit\n");

}

30 printf("rbx is live or not at the block exit: %d\n", liveExit.test(la.getIndex(x86_64::rbx)));
}

3.4 Stack Analysis

The following example shows how to use stack analysis to print out all defined stack heights at the
first instruction in a block.

#include "CFG.h"
#include "Absloc.h"
#include "stackanalysis.h"

4 using namespace Dyninst;
using namespace ParseAPI;

void StackHeight(Function *func, Block *block) {
// Get the address of the first instruction of the block

9 Address addr = block−>start();

// Get the stack heights at that address
StackAnalysis sa(func);
std::vector<std::pair<Absloc, StackAnalysis::Height>> heights;

14 sa.findDefinedHeights(block, addr, heights);

// Print out the stack heights

6

for (auto iter = heights.begin(); iter != heights.end(); iter++) {
const Absloc &loc = iter−>first;

19 const StackAnalysis::Height &height = iter−>second;
printf("%s := %s\n", loc.format().c_str(), height.format().c_str());

}
}

7

4 API Reference

4.1 Class Assignment

Defined in: Absloc.h

An assignment represents data dependencies between an output abstract region that is modified by this
instruction and several input abstract regions that are used by this instruction. An instruction may modify
several abstract regions, so an instruction can correspond to multiple assignments.

typedef boost::shared_ptr<Assignment> Ptr;

Shared pointer for Assignment class.

const std::vector<AbsRegion> &inputs() const;
std::vector<AbsRegion> &inputs();

Return the input abstract regions.

const AbsRegion &out() const;
AbsRegion &out();

Return the output abstract region.

InstructionAPI::Instruction::Ptr insn() const;

Return the instruction that contains this assignment.

Address addr() const;

Return the address of this assignment.

ParseAPI::Function *func() const;

Return the function that contains this assignment.

ParseAPI::Block *block() const;

Return the block that contains this assignment.

const std::string format() const;

Return the string representation of this assignment.

8

4.2 Class AssignmentConverter

Defined in: AbslocInterface.h

This class should be used to convert instructions to assignments.

AssignmentConverter(bool cache, bool stack = true);

Construct an AssignmentConverter. When cache is true, this object will cache the conversion
results for converted instructions. When stack is true, stack analysis is used to distinguish stack
variables at different offset. When stack is false, the stack is treated as a single memory region.

void convert(InstructionAPI::Instruction::Ptr insn,
const Address &addr,
ParseAPI::Function *func,
ParseAPI::Block *blk,
std::vector<Assignment::Ptr> &assign);

Convert instruction insn to assignments and return these assignments in assign. The user also
needs to provide the context of insn, including its address addr, function func, and block blk.

4.3 Class Absloc

Defined in: Absloc.h

Class Absloc represents an abstract location. Abstract locations can have the following types

Type Meaning

Register The abstract location represents a register
Stack The abstract location represents a stack variable
Heap The abstract location represents a heap variable
Unknown The default type of abstract location

static Absloc makePC(Dyninst::Architecture arch);
static Absloc makeSP(Dyninst::Architecture arch);
static Absloc makeFP(Dyninst::Architecture arch);

Shortcut interfaces for creating abstract locations representing PC, SP, and FP

bool isPC() const;
bool isSP() const;
bool isFP() const;

9

Check whether this abstract location represents a PC, SP, or FP.

Absloc();

Create an Unknown type abstract location.

Absloc(MachRegister reg);

Create a Register type abstract location, representing register reg.

Absloc(Address addr):

Create a Heap type abstract location, representing a heap variable at address addr.

Absloc(int o,
int r,
ParseAPI::Function *f);

Create a Stack type abstract location, representing a stack variable in the frame of function f,
within abstract region r, and at offset o within the frame.

std::string format() const;

Return the string representation of this abstract location.

const Type& type() const;

Return the type of this abstract location.

bool isValid() const;

Check whether this abstract location is valid or not. Return true when the type is not Unknown.

const MachRegister ®() const;

Return the register represented by this abstract location. This method should only be called when
this abstract location truly represents a register.

10

int off() const;

Return the offset of the stack variable represented by this abstract location. This method should
only be called when this abstract location truly represents a stack variable.

int region() const;

Return the region of the stack variable represented by this abstract location. This method should
only be called when this abstract location truly represents a stack variable.

ParseAPI::Function *func() const;

Return the function of the stack variable represented by this abstract location. This method
should only be called when this abstract location truly represents a stack variable.

Address addr() const;

Return the address of the heap variable represented by this abstract location. This method should
only be called when this abstract location truly represents a heap variable.

bool operator<(const Absloc &rhs) const;
bool operator==(const Absloc &rhs) const;
bool operator!=(const Absloc &rhs) const;

Comparison operators

4.4 Class AbsRegion

Defined in: Absloc.h

Class AbsRegion represents a set of abstract locations of the same type.

AbsRegion();

Create a default abstract region.

AbsRegion(Absloc::Type t);

Create an abstract region representing all abstract locations with type t.

11

AbsRegion(Absloc a);

Create an abstract region representing a single abstract location a.

bool contains(const Absloc::Type t) const;
bool contains(const Absloc &abs) const;
bool contains(const AbsRegion &rhs) const;

Return true if this abstract region contains abstract locations of type t, contains abstract location
abs, or contains abstract region rhs.

bool containsOfType(Absloc::Type t) const;

Return true if this abstract region contains abstract locations in type t.

bool operator==(const AbsRegion &rhs) const;
bool operator!=(const AbsRegion &rhs) const;
bool operator<(const AbsRegion &rhs) const;

Comparison operators

const std::string format() const;

Return the string representation of the abstract region.

Absloc absloc() const;

Return the abstract location in this abstract region.

Absloc::Type type() const;

Return the type of this abstract region.

AST::Ptr generator() const;

If this abstract region represents memory locations, this method returns address calculation of the
memory access.

bool isImprecise() const;

Return true if this abstract region represents more than one abstract locations.

12

4.5 Class AbsRegionConverter

Defined in: AbslocInterface.h

Class AbsRegionConverter converts instructions to abstract regions.

AbsRegionConverter(bool cache, bool stack = true);

Create an AbsRegionConverter. When cache is true, this object will cache the conversion results
for converted instructions. When stack is true, stack analysis is used to distinguish stack variables
at different offsets. When stack is false, the stack is treated as a single memory region.

void convertAll(InstructionAPI::Expression::Ptr expr,
Address addr,
ParseAPI::Function *func,
ParseAPI::Block *block,
std::vector<AbsRegion> ®ions);

Create all abstract regions used in expr and return them in regions. All registers appear in expr
will have a separate abstract region. If the expression represents a memory access, we will also
create a heap or stack abstract region depending on where it accesses. addr, func, and blocks
specify the contexts of the expression. If PC appears in this expression, we assume the expression
is at address addr and replace PC with a constant value addr.

void convertAll(InstructionAPI::Instruction::Ptr insn,
Address addr,
ParseAPI::Function *func,
ParseAPI::Block *block,
std::vector<AbsRegion> &used,
std::vector<AbsRegion> &defined);

Create abstract regions appearing in instruction insn. Input abstract regions of this instructions
are returned in used and output abstract regions are returned in defined. If the expression
represents a memory access, we will also create a heap or stack abstract region depending on
where it accesses. addr, func, and blocks specify the contexts of the expression. If PC appears
in this expression, we assume the expression is at address addr and replace PC with a constant
value addr.

AbsRegion convert(InstructionAPI::RegisterAST::Ptr reg);

Create an abstract region representing the register reg.

AbsRegion convert(InstructionAPI::Expression::Ptr expr,
Address addr,
ParseAPI::Function *func,
ParseAPI::Block *block);

13

Create and return the single abstract region represented by expr.

4.6 Class Graph

Defined in: Graph.h

We provide a generic graph interface, which allows users to add, delete, and iterate nodes and edges in a
graph. Our slicing algorithms are implemented upon this graph interface, so users can inherit the defined
classes for customization.

typedef boost::shared_ptr<Graph> Ptr;

Shared pointer for Graph

virtual void entryNodes(NodeIterator &begin, NodeIterator &end);

The entry nodes (nodes without any incoming edges) of the graph.

virtual void exitNodes(NodeIterator &begin, NodeIterator &end);

The exit nodes (nodes without any outgoing edges) of the graph.

virtual void allNodes(NodeIterator &begin, NodeIterator &end);

Iterate all nodes in the graph.

bool printDOT(const std::string& fileName);

Output the graph in dot format.

static Graph::Ptr createGraph();

Return an empty graph.

void insertPair(NodePtr source, NodePtr target, EdgePtr edge = EdgePtr());

Insert a pair of nodes into the graph and create a new edge edge from source to target.

14

virtual void insertEntryNode(NodePtr entry);
virtual void insertExitNode(NodePtr exit);

Insert a node as an entry/exit node

virtual void markAsEntryNode(NodePtr entry);
virtual void markAsExitNode(NodePtr exit);

Mark a node that has been added to this graph as an entry/exit node.

void deleteNode(NodePtr node);
void addNode(NodePtr node);

Delete / Add a node.

bool isEntryNode(NodePtr node);
bool isExitNode(NodePtr node);

Check whether a node is an entry / exit node

void clearEntryNodes();
void clearExitNodes();

Clear the marking of entry / exit nodes. Note that the nodes are not deleted from the graph.

unsigned size() const;

Return the number of nodes in the graph.

4.7 Class Node

Defined in: Node.h

typedef boost::shared_ptr<Node> Ptr;

Shared pointer for Node

void ins(EdgeIterator &begin, EdgeIterator &end);
void outs(EdgeIterator &begin, EdgeIterator &end);

15

Iterate over incoming/outgoing edges of this node.

void ins(NodeIterator &begin, NodeIterator &end);
void outs(NodeIterator &begin, NodeIterator &end);

Iterate over adjacent nodes connected with incoming/outgoing edges of this node.

bool hasInEdges();
bool hasOutEdges();

Return true if this node has incoming/outgoing edges.

void deleteInEdge(EdgeIterator e);
void deleteOutEdge(EdgeIterator e);

Delete an incoming/outgoing edge.

virtual Address addr() const;

Return the address of this node.

virtual std::string format() const = 0;

Return the string representation.

class NodeIterator;

Iterator for nodes. Common iterator operations including ++, –, and dereferencing are supported.

4.8 Class Edge

Defined in: Edge.h

typedef boost::shared_ptr<Edge> Edge::Ptr;

Shared pointer for Edge.

16

static Edge::Ptr Edge::createEdge(const Node::Ptr source, const Node::Ptr target);

Create a new directed edge from source to target.

Node::Ptr Edge::source() const;
Node::Ptr Edge::target() const;

Return the source / target node.

void Edge::setSource(Node::Ptr source);
void Edge::setTarget(Node::Ptr target);

Set the source / target node.

class EdgeIterator;

Iterator for edges. Common iterator operations including ++, –, and dereferencing are supported.

4.9 Class Slicer

Defined in: slicing.h

Class Slicer is the main interface for performing forward and backward slicing. The slicing algorithm starts
with a user provided Assignment and generates a graph as the slicing results. The nodes in the generated
Graph are individual assignments that affect the starting assignment (backward slicing) or are affected by
the starting assignment (forward slicing). The edges in the graph are directed and represent either data
flow dependencies or control flow dependencies.

We provide call back functions and allow users to control when to stop slicing. In particular, class
Slicer::Predicates contains a collection of call back functions that can control the specific behaviors
of the slicer. Users can inherit from the Predicates class to provide customized stopping criteria for the
slicer.

Slicer(AssignmentPtr a,
ParseAPI::Block *block,
ParseAPI::Function *func,
bool cache = true,
bool stackAnalysis = true);

Construct a slicer, which can then be used to perform forward or backward slicing starting at the
assignment a. block and func represent the context of assignment a. cache specifies whether
the slicer will cache the results of conversions from instructions to assignments. stackAnalysis
specifies whether the slicer will invoke stack analysis to distinguish stack variables.

17

GraphPtr forwardSlice(Predicates &predicates);
GraphPtr backwardSlice(Predicates &predicates);

Perform forward or backward slicing and use predicates to control the stopping criteria and
return the slicing results as a graph

A slice is represented as a Graph. The nodes and edges are defined as below:

class SliceNode : public Node

The default node data type in a slice graph.

typedef boost::shared_ptr<SliceNode> Ptr;
static SliceNode::Ptr SliceNode::create(AssignmentPtr ptr,

ParseAPI::Block *block,
ParseAPI::Function *func);

Create a slice node, which represents assignment ptr in basic block block and function func.

Class SliceNode has the following methods to retrieve information associated the node:

Method name Return type Method description

block ParseAPI::Block* Basic block of this SliceNode.
func ParseAPI::Function* Function of this SliceNode.
addr Address Address of this SliceNode.
assign Assignment::Ptr Assignment of this SliceNode.
format std::string String representation of this SliceNode.

class SliceEdge : public Edge

The default edge data type in a slice graph.

typedef boost::shared_ptr<SliceEdge> Ptr;
static SliceEdge::Ptr create(SliceNode::Ptr source,

SliceNode::Ptr target,
AbsRegion const&data);

Create a slice edge from source to target and the edge presents a dependency about abstract
region data.

const AbsRegion &data() const;

Get the data annotated on this edge.

18

4.10 Class Slicer::Predicates

Defined in: slicing.h

Class Predicates abstracts the stopping criteria of slicing. Users can inherit this class to control slicing in
various situations, including whether or not to perform inter-procedural slicing, whether or not to search
for control flow dependencies, and whether or not to stop slicing after discovering certain assignments. We
provide a set of call back functions that allow users to dynamically control the behavior of the Slicer.

Predicates();

Construct a default predicate, which will only search for intraprocedural data flow dependencies.

bool searchForControlFlowDep();

Return true if this predicate will search for control flow dependencies. Otherwise, return false.

void setSearchForControlFlowDep(bool cfd);

Change whether or not to search for control flow dependencies according to cfd.

virtual bool widenAtPoint(AssignmentPtr) { return false; }

The default behavior is to return false.

virtual bool endAtPoint(AssignmentPtr);

In backward slicing, after we find a match for an assignment, we pass it to this function. This
function should return true if the user does not want to continue searching for this assignment.
Otherwise, it should return false. The default behavior of this function is to always return false.

typedef std::pair<ParseAPI::Function *, int> StackDepth_t;
typedef std::stack<StackDepth_t> CallStack_t;
virtual bool followCall(ParseAPI::Function * callee,

CallStack_t & cs,
AbsRegion argument);

This predicate function is called when the slicer reaches a direct call site. If it returns true,
the slicer will follow into the callee function callee. This function also takes input cs, which
represents the call stack of the followed callee functions from the starting point of the slicing to
this call site, and argument, which represents the variable to slice with in the callee function. This
function defaults to always returning false. Note that as Dyninst currently does not try to resolve
indirect calls, the slicer will NOT call this function at an indirect call site.

19

virtual std::vector<ParseAPI::Function *>
followCallBackward(ParseAPI::Block * caller,

CallStack_t & cs,
AbsRegion argument);

This predicate function is called when the slicer reaches the entry of a function in the case of
backward slicing or reaches a return instruction in the case of forward slicing. It returns a vector
of caller functions that the user wants the slicer to continue to follow. This function takes input
caller, which represents the call block of the caller, cs, which represents the caller functions that
have been followed to this place, and argument, which represents the variable to slice with in the
caller function. This function defaults to always returning an empty vector.

virtual bool addPredecessor(AbsRegion reg);

In backward slicing, after we match an assignment at a location, the matched AbsRegion reg is
passed to this predicate function. This function should return true if the user wants to continue
to search for dependencies for this AbsRegion. Otherwise, this function should return true. The
default behavior of this function is to always return true.

virtual bool addNodeCallback(AssignmentPtr assign,
std::set<ParseAPI::Edge*> &visited);

In backward slicing, this function is called when the slicer adds a new node to the slice. The newly
added assignment assign and the set of control flow edges visited that have been visited so far
are passed to this function. This function should return true if the user wants to continue slicing.
If this function returns false, the Slicer will not continue to search along the path. The default
behavior of this function is to always return true.

4.11 Class StackAnalysis

The StackAnalysis interface is used to determine the possible stack heights of abstract locations at any
instruction in a function. Due to there often being many paths through the CFG to reach a given instruction,
abstract locations may have different stack heights depending on the path taken to reach that instruction.
In other cases, StackAnalysis is unable to adequately determine what is contained in an abstract location.
In both situations, StackAnalysis is conservative in its reported stack heights. The table below explains
what the reported stack heights mean.

20

Reported stack height Meaning

TOP On all paths to this instruction, the specified abstract location contains a
value that does not point to the stack.

x (some number) On at least one path to this instruction, the specified abstract location has a
stack height of x. On all other paths, the abstract location either has a stack
height of x or doesn’t point to the stack.

BOTTOM There are three possible meanings:

1. On at least one path to this instruction, StackAnalysis was unable to
determine whether or not the specified abstract location points to the
stack.

2. On at least one path to this instruction, StackAnalysis determined
that the specified abstract location points to the stack but could not
determine the exact stack height.

3. On at least two paths to this instruction, the specified abstract location
pointed to different parts of the stack.

StackAnalysis(ParseAPI::Function *f)

Constructs a StackAnalysis object for function f.

StackAnalysis(ParseAPI::Function *f,
const std::map<Address, Address> &crm,
const std::map<Address, TransferSet> &fs)

Constructs a StackAnalysis object for function f with interprocedural analysis activated. A call
resolution map is passed in crm mapping addresses of call sites to the resolved inter-module target
address of the call. Generally the call resolution map is created with DyninstAPI where PLT
resolution is done. Function summaries are passed in fs which maps function entry addresses to
summaries. The function summaries are then used at all call sites to those functions.

StackAnalysis::Height find(ParseAPI::Block *b, Address addr, Absloc loc)

Returns the stack height of abstract location loc before execution of the instruction with address
addr contained in basic block b. The address addr must be contained in block b, and block b must
be contained in the function used to create this StackAnalysis object.

StackAnalysis::Height findSP(ParseAPI::Block *b, Address addr)
StackAnalysis::Height findFP(ParseAPI::Block *b, Address addr)

Returns the stack height of the stack pointer and frame pointer, respectively, before execution of
the instruction with address addr contained in basic block b. The address addr must be contained
in block b, and block b must be contained in the function used to create this StackAnalysis object.

21

void findDefinedHeights(ParseAPI::Block *b,
Address addr,
std::vector<std::pair<Absloc, StackAnalysis::Height>> &heights)

Writes to the vector heights all defined <abstract location, stack height> pairs before execution
of the instruction with address addr contained in basic block b. Note that abstract locations with
stack heights of TOP (i.e. they do not point to the stack) are not written to heights. The address
addr must be contained in block b, and block b must be contained in the function used to create
this StackAnalysis object.

bool canGetFunctionSummary()

Returns true if the function associated with this StackAnalysis object returns on some execution
path.

bool getFunctionSummary(TransferSet &summary)

Returns in summary a summary for the function associated with this StackAnalysis object. Func-
tion summaries can then be passed to the constructors for other StackAnalysis objects to enable
interprocedural analysis. Returns true on success.

4.12 Class StackAnalysis::Height

Defined in: stackanalysis.h

The Height class is used to represent the abstract notion of stack heights. Every Height object represents
a stack height of either TOP, BOTTOM, or x, where x is some integral number. The Height class also
defines methods for comparing, combining, and modifying stack heights in various ways.

typedef signed long Height_t

The underlying data type used to convert between Height objects and integral values.

Method name Return type Method description

height Height_t This stack height as an integral value.
format std::string This stack height as a string.
isTop bool True if this stack height is TOP.
isBottom bool True if this stack height is BOTTOM.

Height(const Height_t h)

Creates a Height object with stack height h.

22

Height()

Creates a Height object with stack height TOP.

bool operator<(const Height &rhs) const
bool operator>(const Height &rhs) const
bool operator<=(const Height &rhs) const
bool operator>=(const Height &rhs) const
bool operator==(const Height &rhs) const
bool operator!=(const Height &rhs) const

Comparison operators for Height objects. Compares based on the integral stack height treating
TOP as MAX_HEIGHT and BOTTOM as MIN_HEIGHT.

Height &operator+=(const Height &rhs)
Height &operator+=(const signed long &rhs)
const Height operator+(const Height &rhs) const
const Height operator+(const signed long &rhs) const
const Height operator-(const Height &rhs) const

Returns the result of basic arithmetic on Height objects according to the following rules, where x
and y are integral stack heights and S represents any stack height:

• TOP + TOP = TOP

• TOP + x = BOTTOM

• x+ y = (x+ y)

• BOTTOM + S = BOTTOM

Note that the subtraction rules can be obtained by replacing all + signs with - signs.

The operator+ and operator- methods leave this Height object unmodified while the operator+=
methods update this Height object with the result of the computation. For the methods where
rhs is a const signed long, it is not possible to set rhs to TOP or BOTTOM.

4.13 Class AST

Defined in: DynAST.h

We provide a generic AST framework to represent tree structures. One example use case is to represent
instruction semantics with symbolic expressions. The AST framework includes the base class definitions
for tree nodes and visitors. Users can inherit tree node classes to create their own AST structure and AST
visitors to write their own analyses for the AST.

All AST node classes should be derived from the AST class. Currently we have the following types of AST
nodes.

23

AST::ID Meaning

V_AST Base class type
V_BottomAST Bottom AST node
V_ConstantAST Constant AST node
V_VariableAST Variable AST node
V_RoseAST ROSEOperation AST node
V_StackAST Stack AST node

typedef boost::shared_ptr<AST> Ptr;

Shared pointer for class AST.

typedef std::vector<AST::Ptr> Children;

The container type for the children of this AST.

bool operator==(const AST &rhs) const;
bool equals(AST::Ptr rhs);

Check whether two AST nodes are equal. Return true when two nodes are in the same type and
are equal according to the == operator of that type.

virtual unsigned numChildren() const;

Return the number of children of this node.

virtual AST::Ptr child(unsigned i) const;

Return the ith child.

virtual const std::string format() const = 0;

Return the string representation of the node.

static AST::Ptr substitute(AST::Ptr in, AST::Ptr a, AST::Ptr b);

Substitute every occurrence of a with b in AST in. Return a new AST after the substitution.

virtual AST::ID AST::getID() const;

24

Return the class type ID of this node.

virtual Ptr accept(ASTVisitor *v);

Apply visitor v to this node. Note that this method will not automatically apply the visitor to its
children.

virtual void AST::setChild(int i, AST::Ptr c);

Set the ith child of this node to c.

4.14 Class SymEval

Defined in: SymEval.h

Class SymEval provides interfaces for expanding an instruction to its symbolic expression and expanding a
slice graph to symbolic expressions for all abstract locations defined in this slice.

typedef std::map<Assignment::Ptr, AST::Ptr, AssignmentPtrValueComp> Result_t;

This data type represents the results of symbolic expansion of a slice. Each assignment in the slice
has a corresponding AST.

static std::pair<AST::Ptr, bool> expand(const Assignment::Ptr &assignment,
bool applyVisitors = true);

This interface expands a single assignment given by assignment and returns a std::pair, in which
the first element is the AST after expansion and the second element is a bool indicating whether
the expansion succeeded or not. applyVisitors specifies whether or not to perform stack analysis
to precisely track stack variables.

static bool expand(Result_t &res,
std::set<InstructionPtr> &failedInsns,

bool applyVisitors = true);

This interface expands a set of assignment prepared in res. The corresponding ASTs are written
back into res and all instructions that failed during expansion are inserted into failedInsns.
applyVisitors specifies whether or not to perform stack analysis to precisely track stack variables.
This function returns true when all assignments in res are successfully expanded.

25

Retval_t Meaning

FAILED failed
WIDEN_NODE widen
FAILED_TRANSLATION failed translation
SKIPPED_INPUT skipped input
SUCCESS success

static Retval_t expand(Dyninst::Graph::Ptr slice, DataflowAPI::Result_t &res);

This interface expands a slice and returns an AST for each assignment in the slice. This function
will perform substitution of ASTs.

We use an AST to represent the symbolic expressions of an assignment. A symbolic expression AST contains
internal node type RoseAST, which abstracts the operations performed with its child nodes, and two leave
node types: VariableAST and ConstantAST.

RoseAST, VariableAST, and ConstantAST all extend class AST. Besides the methods provided by class AST,
RoseAST, VariableAST, and ConstantAST each have a different data structure associated with them.

Variable& VariableAST::val() const;
Constant& ConstantAST::val() const;
ROSEOperation & RoseAST::val() const;

We now describe data structure Variable, Constant, and ROSEOperation.

struct Variable;

A Variable represents an abstract region at a particular address.

Variable::Variable();
Variable::Variable(AbsRegion r);
Variable::Variable(AbsRegion r, Address a);

The constructors of class Variable.

bool Variable::operator==(const Variable &rhs) const;
bool Variable::operator<(const Variable &rhs) const;

Two Variable objects are equal when their AbsRegion are equal and their addresses are equal.

const std::string Variable::format() const;

26

Return the string representation of the Variable.

AbsRegion Variable::reg;
Address Variable::addr;

The abstraction region and the address of this Variable.

struct Constant;

A Constant object represents a constant value in code.

Constant::Constant();
Constant::Constant(uint64_t v);
Constant::Constant(uint64_t v, size_t s);

Construct Constant objects.

bool Constant::operator==(const Constant &rhs) const;
bool Constant::operator<(const Constant &rhs) const;

Comparison operators for Constant objects. Comparison is based on the value and size.

const std::string Constant::format() const;

Return the string representation of the Constant object.

uint64_t Constant::val;
size_t Constant::size;

The numerical value and bit size of this value.

struct ROSEOperation;

ROSEOperation defines the following operations and we represent the semantics of all instructions with these
operations.

27

ROSEOperation::Op Meaning

nullOp No operation
extractOp Extract bit ranges from a value
invertOp Flip every bit
negateOp Negate the value
signExtendOp Sign-extend the value
equalToZeroOp Check whether the value is zero or not
generateMaskOp Generate mask
LSBSetOp LSB set op
MSBSetOp MSB set op
concatOp Concatenate two values to form a new value
andOp Bit-wise and operation
orOp Bit-wise or operation
xorOp Bit-wise xor operation
addOp Add operation
rotateLOp Rotate to left operation
rotateROp Rotate to right operation
shiftLOp Shift to left operation
shiftROp Shift to right operation
shiftRArithOp Arithmetic shift to right operation
derefOp Dereference memory operation
writeRepOp Write rep operation
writeOp Write operation
ifOp If operation
sMultOp Signed multiplication operation
uMultOp Unsigned multiplication operation
sDivOp Signed division operation
sModOp Signed modular operation
uDivOp Unsigned division operation
uModOp Unsigned modular operation
extendOp Zero extend operation
extendMSBOp Extend the most significant bit operation

ROSEOperation::ROSEOperation(Op o) : op(o);
ROSEOperation::ROSEOperation(Op o, size_t s);

Constructors for ROSEOperation

bool ROSEOperation::operator==(const ROSEOperation &rhs) const;

Equal operator

const std::string ROSEOperation::format() const;

Return the string representation.

ROSEOperation::Op ROSEOperation::op;
size_t ROSEOperation::size;

28

4.15 Class ASTVisitor

The ASTVisitor class defines callback functions to apply during visiting an AST for each AST node type.
Users can inherit from this class to write customized analyses for ASTs.

typedef boost::shared_ptr<AST> ASTVisitor::ASTPtr;
virtual ASTVisitor::ASTPtr ASTVisitor::visit(AST *);
virtual ASTVisitor::ASTPtr ASTVisitor::visit(DataflowAPI::BottomAST *);
virtual ASTVisitor::ASTPtr ASTVisitor::visit(DataflowAPI::ConstantAST *);
virtual ASTVisitor::ASTPtr ASTVisitor::visit(DataflowAPI::VariableAST *);
virtual ASTVisitor::ASTPtr ASTVisitor::visit(DataflowAPI::RoseAST *);
virtual ASTVisitor::ASTPtr ASTVisitor::visit(StackAST *);

Callback functions for visiting each type of AST node. The default behavior is to return the input
parameter.

29

	Introduction
	Abstractions
	Examples
	Slicing
	Symbolic Evaluation
	Liveness Analysis
	Stack Analysis

	API Reference
	Class Assignment
	Class AssignmentConverter
	Class Absloc
	Class AbsRegion
	Class AbsRegionConverter
	Class Graph
	Class Node
	Class Edge
	Class Slicer
	Class Slicer::Predicates
	Class StackAnalysis
	Class StackAnalysis::Height
	Class AST
	Class SymEval
	Class ASTVisitor

